mars.tensor.linspace#

mars.tensor.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None, gpu=None, chunk_size=None)[source]#

Return evenly spaced numbers over a specified interval.

Returns num evenly spaced samples, calculated over the interval [start, stop].

The endpoint of the interval can optionally be excluded.

Parameters
  • start (scalar) – The starting value of the sequence.

  • stop (scalar) – The end value of the sequence, unless endpoint is set to False. In that case, the sequence consists of all but the last of num + 1 evenly spaced samples, so that stop is excluded. Note that the step size changes when endpoint is False.

  • num (int, optional) – Number of samples to generate. Default is 50. Must be non-negative.

  • endpoint (bool, optional) – If True, stop is the last sample. Otherwise, it is not included. Default is True.

  • retstep (bool, optional) – If True, return (samples, step), where step is the spacing between samples.

  • dtype (dtype, optional) – The type of the output tensor. If dtype is not given, infer the data type from the other input arguments.

  • gpu (bool, optional) – Allocate the tensor on GPU if True, False as default

  • chunk_size (int or tuple of int or tuple of ints, optional) – Desired chunk size on each dimension

Returns

  • samples (Tensor) – There are num equally spaced samples in the closed interval [start, stop] or the half-open interval [start, stop) (depending on whether endpoint is True or False).

  • step (float, optional) – Only returned if retstep is True

    Size of spacing between samples.

See also

arange

Similar to linspace, but uses a step size (instead of the number of samples).

logspace

Samples uniformly distributed in log space.

Examples

>>> import mars.tensor as mt
>>> mt.linspace(2.0, 3.0, num=5).execute()
array([ 2.  ,  2.25,  2.5 ,  2.75,  3.  ])
>>> mt.linspace(2.0, 3.0, num=5, endpoint=False).execute()
array([ 2. ,  2.2,  2.4,  2.6,  2.8])
>>> mt.linspace(2.0, 3.0, num=5, retstep=True).execute()
(array([ 2.  ,  2.25,  2.5 ,  2.75,  3.  ]), 0.25)

Graphical illustration:

>>> import matplotlib.pyplot as plt
>>> N = 8
>>> y = mt.zeros(N)
>>> x1 = mt.linspace(0, 10, N, endpoint=True)
>>> x2 = mt.linspace(0, 10, N, endpoint=False)
>>> plt.plot(x1.execute(), y.execute(), 'o')
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.plot(x2.execute(), y.execute() + 0.5, 'o')
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.ylim([-0.5, 1])
(-0.5, 1)
>>> plt.show()