mars.learn.metrics._classification 源代码

# Copyright 1999-2021 Alibaba Group Holding Ltd.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np

from ... import opcodes as OperandDef
from ... import tensor as mt
from ...core import ENTITY_TYPE, recursive_tile
from ...core.context import get_context
from ...serialization.serializables import AnyField, BoolField, KeyField
from ...tensor.core import TensorOrder
from ..operands import LearnOperand, LearnOperandMixin, OutputType
from ..preprocessing import LabelBinarizer
from ..utils import check_array, check_consistent_length
from ._check_targets import _check_targets


class AccuracyScore(LearnOperand, LearnOperandMixin):
    _op_type_ = OperandDef.ACCURACY_SCORE

    _y_true = AnyField('y_true')
    _y_pred = AnyField('y_pred')
    _normalize = BoolField('normalize')
    _sample_weight = AnyField('sample_weight')
    _type_true = KeyField('type_true')

    def __init__(self, y_true=None, y_pred=None, normalize=None,
                 sample_weight=None, type_true=None, **kw):
        super().__init__(_y_true=y_true, _y_pred=y_pred,
                         _normalize=normalize, _sample_weight=sample_weight,
                         _type_true=type_true, **kw)
        self.output_types = [OutputType.tensor]

    @property
    def y_true(self):
        return self._y_true

    @property
    def y_pred(self):
        return self._y_pred

    @property
    def normalize(self):
        return self._normalize

    @property
    def sample_weight(self):
        return self._sample_weight

    @property
    def type_true(self):
        return self._type_true

    def _set_inputs(self, inputs):
        super()._set_inputs(inputs)
        inputs_iter = iter(self._inputs)
        if self._y_true is not None:
            self._y_true = next(inputs_iter)
        if self._y_pred is not None:
            self._y_pred = next(inputs_iter)
        if self._type_true is not None:
            self._type_true = next(inputs_iter)
        if isinstance(self._sample_weight, ENTITY_TYPE):
            self._sample_weight = next(inputs_iter)

    def __call__(self, y_true, y_pred):
        type_true, y_true, y_pred = _check_targets(y_true, y_pred)
        self._type_true = type_true
        inputs = [y_true, y_pred, type_true]
        if isinstance(self._sample_weight, ENTITY_TYPE):
            inputs.append(self._sample_weight)

        dtype = np.dtype(float) if self._normalize else np.result_type(y_true, y_pred)
        return self.new_tileable(inputs, dtype=dtype,
                                 shape=(), order=TensorOrder.C_ORDER)

    @classmethod
    def tile(cls, op):
        # make sure type_true executed first
        chunks = [op.type_true.chunks[0]]
        yield chunks

        ctx = get_context()
        type_true = ctx.get_chunks_result([chunks[0].key])[0]

        y_true, y_pred = op.y_true, op.y_pred
        if type_true.item().startswith('multilabel'):
            differing_labels = mt.count_nonzero(y_true - y_pred, axis=1)
            score = mt.equal(differing_labels, 0)
        else:
            score = mt.equal(y_true, y_pred)

        result = _weighted_sum(score, op.sample_weight, op.normalize)
        return [(yield from recursive_tile(result))]


def _weighted_sum(sample_score, sample_weight, normalize=False):
    if normalize:
        return mt.average(sample_score, weights=sample_weight)
    elif sample_weight is not None:
        return mt.dot(sample_score, sample_weight)
    else:
        return sample_score.sum()


[文档]def accuracy_score(y_true, y_pred, normalize=True, sample_weight=None, session=None, run_kwargs=None): """Accuracy classification score. In multilabel classification, this function computes subset accuracy: the set of labels predicted for a sample must *exactly* match the corresponding set of labels in y_true. Read more in the :ref:`User Guide <accuracy_score>`. Parameters ---------- y_true : 1d array-like, or label indicator tensor / sparse tensor Ground truth (correct) labels. y_pred : 1d array-like, or label indicator tensor / sparse tensor Predicted labels, as returned by a classifier. normalize : bool, optional (default=True) If ``False``, return the number of correctly classified samples. Otherwise, return the fraction of correctly classified samples. sample_weight : array-like of shape (n_samples,), default=None Sample weights. Returns ------- score : float If ``normalize == True``, return the fraction of correctly classified samples (float), else returns the number of correctly classified samples (int). The best performance is 1 with ``normalize == True`` and the number of samples with ``normalize == False``. See also -------- jaccard_score, hamming_loss, zero_one_loss Notes ----- In binary and multiclass classification, this function is equal to the ``jaccard_score`` function. Examples -------- >>> from mars.learn.metrics import accuracy_score >>> y_pred = [0, 2, 1, 3] >>> y_true = [0, 1, 2, 3] >>> accuracy_score(y_true, y_pred).execute() 0.5 >>> accuracy_score(y_true, y_pred, normalize=False).execute() 2 In the multilabel case with binary label indicators: >>> import mars.tensor as mt >>> accuracy_score(mt.array([[0, 1], [1, 1]]), mt.ones((2, 2))).execute() 0.5 """ # Compute accuracy for each possible representation op = AccuracyScore(y_true=y_true, y_pred=y_pred, normalize=normalize, sample_weight=sample_weight) score = op(y_true, y_pred) return score.execute(session=session, **(run_kwargs or dict()))
[文档]def log_loss(y_true, y_pred, *, eps=1e-15, normalize=True, sample_weight=None, labels=None): r"""Log loss, aka logistic loss or cross-entropy loss. This is the loss function used in (multinomial) logistic regression and extensions of it such as neural networks, defined as the negative log-likelihood of a logistic model that returns ``y_pred`` probabilities for its training data ``y_true``. The log loss is only defined for two or more labels. For a single sample with true label :math:`y \in \{0,1\}` and and a probability estimate :math:`p = \operatorname{Pr}(y = 1)`, the log loss is: .. math:: L_{\log}(y, p) = -(y \log (p) + (1 - y) \log (1 - p)) Read more in the :ref:`User Guide <log_loss>`. Parameters ---------- y_true : array-like or label indicator matrix Ground truth (correct) labels for n_samples samples. y_pred : array-like of float, shape = (n_samples, n_classes) or (n_samples,) Predicted probabilities, as returned by a classifier's predict_proba method. If ``y_pred.shape = (n_samples,)`` the probabilities provided are assumed to be that of the positive class. The labels in ``y_pred`` are assumed to be ordered alphabetically, as done by :class:`preprocessing.LabelBinarizer`. eps : float, default=1e-15 Log loss is undefined for p=0 or p=1, so probabilities are clipped to max(eps, min(1 - eps, p)). normalize : bool, default=True If true, return the mean loss per sample. Otherwise, return the sum of the per-sample losses. sample_weight : array-like of shape (n_samples,), default=None Sample weights. labels : array-like, default=None If not provided, labels will be inferred from y_true. If ``labels`` is ``None`` and ``y_pred`` has shape (n_samples,) the labels are assumed to be binary and are inferred from ``y_true``. Returns ------- loss : float Notes ----- The logarithm used is the natural logarithm (base-e). Examples -------- >>> from mars.learn.metrics import log_loss >>> log_loss(["spam", "ham", "ham", "spam"], ... [[.1, .9], [.9, .1], [.8, .2], [.35, .65]]) 0.21616... References ---------- C.M. Bishop (2006). Pattern Recognition and Machine Learning. Springer, p. 209. """ y_pred = check_array(y_pred, ensure_2d=False) check_consistent_length(y_pred, y_true, sample_weight) lb = LabelBinarizer() if labels is not None: lb.fit(labels) else: lb.fit(y_true) if len(lb.classes_) == 1: if labels is None: raise ValueError('y_true contains only one label ({0}). Please ' 'provide the true labels explicitly through the ' 'labels argument.'.format(lb.classes_[0].fetch())) else: raise ValueError('The labels array needs to contain at least two ' 'labels for log_loss, ' 'got {0}.'.format(lb.classes_.fetch())) transformed_labels = lb.transform(y_true) if transformed_labels.shape[1] == 1: transformed_labels = mt.append(1 - transformed_labels, transformed_labels, axis=1) # Clipping y_pred = mt.clip(y_pred, eps, 1 - eps) # If y_pred is of single dimension, assume y_true to be binary # and then check. if y_pred.ndim == 1: # pragma: no cover y_pred = y_pred[:, mt.newaxis] if y_pred.shape[1] == 1: # pragma: no cover y_pred = mt.append(1 - y_pred, y_pred, axis=1) # Check if dimensions are consistent. transformed_labels = check_array(transformed_labels) if len(lb.classes_) != y_pred.shape[1]: if labels is None: raise ValueError("y_true and y_pred contain different number of " "classes {0}, {1}. Please provide the true " "labels explicitly through the labels argument. " "Classes found in " "y_true: {2}".format(transformed_labels.shape[1], y_pred.shape[1], lb.classes_.fetch())) else: raise ValueError('The number of classes in labels is different ' 'from that in y_pred. Classes found in ' 'labels: {0}'.format(lb.classes_.fetch())) # Renormalize y_pred /= y_pred.sum(axis=1)[:, mt.newaxis] loss = -(transformed_labels * mt.log(y_pred)).sum(axis=1) return _weighted_sum(loss, sample_weight, normalize).execute()