10 minutes to Mars DataFrame#

This is a short introduction to Mars DataFrame which is originated from 10 minutes to pandas.

Customarily, we import as follows:

In [1]: import mars

In [2]: import mars.tensor as mt

In [3]: import mars.dataframe as md

Now create a new default session.

In [4]: mars.new_session()
Out[4]: <mars.deploy.oscar.session.SyncSession at 0x7f30738e4e50>

Object creation#

Creating a Series by passing a list of values, letting it create a default integer index:

In [5]: s = md.Series([1, 3, 5, mt.nan, 6, 8])

In [6]: s.execute()
Out[6]: 
0    1.0
1    3.0
2    5.0
3    NaN
4    6.0
5    8.0
dtype: float64

Creating a DataFrame by passing a Mars tensor, with a datetime index and labeled columns:

In [7]: dates = md.date_range('20130101', periods=6)

In [8]: dates.execute()
Out[8]: 
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
               '2013-01-05', '2013-01-06'],
              dtype='datetime64[ns]', freq='D')

In [9]: df = md.DataFrame(mt.random.randn(6, 4), index=dates, columns=list('ABCD'))

In [10]: df.execute()
Out[10]: 
                   A         B         C         D
2013-01-01  0.691614 -1.105920 -0.100480  1.124014
2013-01-02 -0.563252  0.615544 -0.629121 -1.613738
2013-01-03  0.117056 -1.281171 -0.048552 -0.403358
2013-01-04  0.265501 -0.504812  0.317328  1.150110
2013-01-05 -0.660179  0.723665 -1.577349 -0.502156
2013-01-06  0.413119  2.180548  0.522483 -0.214173

Creating a DataFrame by passing a dict of objects that can be converted to series-like.

In [11]: df2 = md.DataFrame({'A': 1.,
   ....:                     'B': md.Timestamp('20130102'),
   ....:                     'C': md.Series(1, index=list(range(4)), dtype='float32'),
   ....:                     'D': mt.array([3] * 4, dtype='int32'),
   ....:                     'E': 'foo'})
   ....: 

In [12]: df2.execute()
Out[12]: 
     A          B    C  D    E
0  1.0 2013-01-02  1.0  3  foo
1  1.0 2013-01-02  1.0  3  foo
2  1.0 2013-01-02  1.0  3  foo
3  1.0 2013-01-02  1.0  3  foo

The columns of the resulting DataFrame have different dtypes.

In [13]: df2.dtypes
Out[13]: 
A           float64
B    datetime64[ns]
C           float32
D             int32
E            object
dtype: object

Viewing data#

Here is how to view the top and bottom rows of the frame:

In [14]: df.head().execute()
Out[14]: 
                   A         B         C         D
2013-01-01  0.691614 -1.105920 -0.100480  1.124014
2013-01-02 -0.563252  0.615544 -0.629121 -1.613738
2013-01-03  0.117056 -1.281171 -0.048552 -0.403358
2013-01-04  0.265501 -0.504812  0.317328  1.150110
2013-01-05 -0.660179  0.723665 -1.577349 -0.502156

In [15]: df.tail(3).execute()
Out[15]: 
                   A         B         C         D
2013-01-04  0.265501 -0.504812  0.317328  1.150110
2013-01-05 -0.660179  0.723665 -1.577349 -0.502156
2013-01-06  0.413119  2.180548  0.522483 -0.214173

Display the index, columns:

In [16]: df.index.execute()
Out[16]: 
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
               '2013-01-05', '2013-01-06'],
              dtype='datetime64[ns]', freq='D')

In [17]: df.columns.execute()
Out[17]: Index(['A', 'B', 'C', 'D'], dtype='object')

DataFrame.to_tensor() gives a Mars tensor representation of the underlying data. Note that this can be an expensive operation when your DataFrame has columns with different data types, which comes down to a fundamental difference between DataFrame and tensor: tensors have one dtype for the entire tensor, while DataFrames have one dtype per column. When you call DataFrame.to_tensor(), Mars DataFrame will find the tensor dtype that can hold all of the dtypes in the DataFrame. This may end up being object, which requires casting every value to a Python object.

For df, our DataFrame of all floating-point values, DataFrame.to_tensor() is fast and doesn’t require copying data.

In [18]: df.to_tensor().execute()
Out[18]: 
array([[ 0.69161369, -1.10591963, -0.10047961,  1.12401441],
       [-0.56325231,  0.61554437, -0.62912078, -1.61373767],
       [ 0.11705591, -1.28117091, -0.04855218, -0.40335838],
       [ 0.26550144, -0.50481205,  0.31732827,  1.15010997],
       [-0.66017923,  0.72366454, -1.57734917, -0.50215598],
       [ 0.41311872,  2.18054793,  0.52248332, -0.21417311]])

For df2, the DataFrame with multiple dtypes, DataFrame.to_tensor() is relatively expensive.

In [19]: df2.to_tensor().execute()
Out[19]: 
array([[1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo'],
       [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo'],
       [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo'],
       [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo']],
      dtype=object)

Note

DataFrame.to_tensor() does not include the index or column labels in the output.

describe() shows a quick statistic summary of your data:

In [20]: df.describe().execute()
Out[20]: 
              A         B         C         D
count  6.000000  6.000000  6.000000  6.000000
mean   0.043976  0.104642 -0.252615 -0.076550
std    0.543079  1.319922  0.759879  1.059800
min   -0.660179 -1.281171 -1.577349 -1.613738
25%   -0.393175 -0.955643 -0.496960 -0.477457
50%    0.191279  0.055366 -0.074516 -0.308766
75%    0.376214  0.696634  0.225858  0.789468
max    0.691614  2.180548  0.522483  1.150110

Sorting by an axis:

In [21]: df.sort_index(axis=1, ascending=False).execute()
Out[21]: 
                   D         C         B         A
2013-01-01  1.124014 -0.100480 -1.105920  0.691614
2013-01-02 -1.613738 -0.629121  0.615544 -0.563252
2013-01-03 -0.403358 -0.048552 -1.281171  0.117056
2013-01-04  1.150110  0.317328 -0.504812  0.265501
2013-01-05 -0.502156 -1.577349  0.723665 -0.660179
2013-01-06 -0.214173  0.522483  2.180548  0.413119

Sorting by values:

In [22]: df.sort_values(by='B').execute()
Out[22]: 
                   A         B         C         D
2013-01-03  0.117056 -1.281171 -0.048552 -0.403358
2013-01-01  0.691614 -1.105920 -0.100480  1.124014
2013-01-04  0.265501 -0.504812  0.317328  1.150110
2013-01-02 -0.563252  0.615544 -0.629121 -1.613738
2013-01-05 -0.660179  0.723665 -1.577349 -0.502156
2013-01-06  0.413119  2.180548  0.522483 -0.214173

Selection#

Note

While standard Python / Numpy expressions for selecting and setting are intuitive and come in handy for interactive work, for production code, we recommend the optimized DataFrame data access methods, .at, .iat, .loc and .iloc.

Getting#

Selecting a single column, which yields a Series, equivalent to df.A:

In [23]: df['A'].execute()
Out[23]: 
2013-01-01    0.691614
2013-01-02   -0.563252
2013-01-03    0.117056
2013-01-04    0.265501
2013-01-05   -0.660179
2013-01-06    0.413119
Freq: D, Name: A, dtype: float64

Selecting via [], which slices the rows.

In [24]: df[0:3].execute()
Out[24]: 
                   A         B         C         D
2013-01-01  0.691614 -1.105920 -0.100480  1.124014
2013-01-02 -0.563252  0.615544 -0.629121 -1.613738
2013-01-03  0.117056 -1.281171 -0.048552 -0.403358

In [25]: df['20130102':'20130104'].execute()
Out[25]: 
                   A         B         C         D
2013-01-02 -0.563252  0.615544 -0.629121 -1.613738
2013-01-03  0.117056 -1.281171 -0.048552 -0.403358
2013-01-04  0.265501 -0.504812  0.317328  1.150110

Selection by label#

For getting a cross section using a label:

In [26]: df.loc['20130101'].execute()
Out[26]: 
A    0.691614
B   -1.105920
C   -0.100480
D    1.124014
Name: 2013-01-01 00:00:00, dtype: float64

Selecting on a multi-axis by label:

In [27]: df.loc[:, ['A', 'B']].execute()
Out[27]: 
                   A         B
2013-01-01  0.691614 -1.105920
2013-01-02 -0.563252  0.615544
2013-01-03  0.117056 -1.281171
2013-01-04  0.265501 -0.504812
2013-01-05 -0.660179  0.723665
2013-01-06  0.413119  2.180548

Showing label slicing, both endpoints are included:

In [28]: df.loc['20130102':'20130104', ['A', 'B']].execute()
Out[28]: 
                   A         B
2013-01-02 -0.563252  0.615544
2013-01-03  0.117056 -1.281171
2013-01-04  0.265501 -0.504812

Reduction in the dimensions of the returned object:

In [29]: df.loc['20130102', ['A', 'B']].execute()
Out[29]: 
A   -0.563252
B    0.615544
Name: 2013-01-02 00:00:00, dtype: float64

For getting a scalar value:

In [30]: df.loc['20130101', 'A'].execute()
Out[30]: 0.6916136887164693

For getting fast access to a scalar (equivalent to the prior method):

In [31]: df.at['20130101', 'A'].execute()
Out[31]: 0.6916136887164693

Selection by position#

Select via the position of the passed integers:

In [32]: df.iloc[3].execute()
Out[32]: 
A    0.265501
B   -0.504812
C    0.317328
D    1.150110
Name: 2013-01-04 00:00:00, dtype: float64

By integer slices, acting similar to numpy/python:

In [33]: df.iloc[3:5, 0:2].execute()
Out[33]: 
                   A         B
2013-01-04  0.265501 -0.504812
2013-01-05 -0.660179  0.723665

By lists of integer position locations, similar to the numpy/python style:

In [34]: df.iloc[[1, 2, 4], [0, 2]].execute()
Out[34]: 
                   A         C
2013-01-02 -0.563252 -0.629121
2013-01-03  0.117056 -0.048552
2013-01-05 -0.660179 -1.577349

For slicing rows explicitly:

In [35]: df.iloc[1:3, :].execute()
Out[35]: 
                   A         B         C         D
2013-01-02 -0.563252  0.615544 -0.629121 -1.613738
2013-01-03  0.117056 -1.281171 -0.048552 -0.403358

For slicing columns explicitly:

In [36]: df.iloc[:, 1:3].execute()
Out[36]: 
                   B         C
2013-01-01 -1.105920 -0.100480
2013-01-02  0.615544 -0.629121
2013-01-03 -1.281171 -0.048552
2013-01-04 -0.504812  0.317328
2013-01-05  0.723665 -1.577349
2013-01-06  2.180548  0.522483

For getting a value explicitly:

In [37]: df.iloc[1, 1].execute()
Out[37]: 0.6155443677589363

For getting fast access to a scalar (equivalent to the prior method):

In [38]: df.iat[1, 1].execute()
Out[38]: 0.6155443677589363

Boolean indexing#

Using a single column’s values to select data.

In [39]: df[df['A'] > 0].execute()
Out[39]: 
                   A         B         C         D
2013-01-01  0.691614 -1.105920 -0.100480  1.124014
2013-01-03  0.117056 -1.281171 -0.048552 -0.403358
2013-01-04  0.265501 -0.504812  0.317328  1.150110
2013-01-06  0.413119  2.180548  0.522483 -0.214173

Selecting values from a DataFrame where a boolean condition is met.

In [40]: df[df > 0].execute()
Out[40]: 
                   A         B         C         D
2013-01-01  0.691614       NaN       NaN  1.124014
2013-01-02       NaN  0.615544       NaN       NaN
2013-01-03  0.117056       NaN       NaN       NaN
2013-01-04  0.265501       NaN  0.317328  1.150110
2013-01-05       NaN  0.723665       NaN       NaN
2013-01-06  0.413119  2.180548  0.522483       NaN

Operations#

Stats#

Operations in general exclude missing data.

Performing a descriptive statistic:

In [41]: df.mean().execute()
Out[41]: 
A    0.043976
B    0.104642
C   -0.252615
D   -0.076550
dtype: float64

Same operation on the other axis:

In [42]: df.mean(1).execute()
Out[42]: 
2013-01-01    0.152307
2013-01-02   -0.547642
2013-01-03   -0.404006
2013-01-04    0.307032
2013-01-05   -0.504005
2013-01-06    0.725494
Freq: D, dtype: float64

Operating with objects that have different dimensionality and need alignment. In addition, Mars DataFrame automatically broadcasts along the specified dimension.

In [43]: s = md.Series([1, 3, 5, mt.nan, 6, 8], index=dates).shift(2)

In [44]: s.execute()
Out[44]: 
2013-01-01    NaN
2013-01-02    NaN
2013-01-03    1.0
2013-01-04    3.0
2013-01-05    5.0
2013-01-06    NaN
Freq: D, dtype: float64

In [45]: df.sub(s, axis='index').execute()
Out[45]: 
                   A         B         C         D
2013-01-01       NaN       NaN       NaN       NaN
2013-01-02       NaN       NaN       NaN       NaN
2013-01-03 -0.882944 -2.281171 -1.048552 -1.403358
2013-01-04 -2.734499 -3.504812 -2.682672 -1.849890
2013-01-05 -5.660179 -4.276335 -6.577349 -5.502156
2013-01-06       NaN       NaN       NaN       NaN

Apply#

Applying functions to the data:

In [46]: df.apply(lambda x: x.max() - x.min()).execute()
Out[46]: 
A    1.351793
B    3.461719
C    2.099832
D    2.763848
dtype: float64

String Methods#

Series is equipped with a set of string processing methods in the str attribute that make it easy to operate on each element of the array, as in the code snippet below. Note that pattern-matching in str generally uses regular expressions by default (and in some cases always uses them). See more at Vectorized String Methods.

In [47]: s = md.Series(['A', 'B', 'C', 'Aaba', 'Baca', mt.nan, 'CABA', 'dog', 'cat'])

In [48]: s.str.lower().execute()
Out[48]: 
0       a
1       b
2       c
3    aaba
4    baca
5     NaN
6    caba
7     dog
8     cat
dtype: object

Merge#

Concat#

Mars DataFrame provides various facilities for easily combining together Series and DataFrame objects with various kinds of set logic for the indexes and relational algebra functionality in the case of join / merge-type operations.

Concatenating DataFrame objects together with concat():

In [49]: df = md.DataFrame(mt.random.randn(10, 4))

In [50]: df.execute()
Out[50]: 
          0         1         2         3
0 -0.744246 -0.820294 -0.218120  0.362971
1 -1.683835 -0.068356  0.001055 -0.629065
2 -0.851774  0.640352 -0.308788 -0.046406
3 -1.819059  0.263546  1.096967  1.692534
4 -2.515883 -0.037570  0.235536 -0.462660
5 -0.936556  0.693611  1.061610  1.087943
6  1.230238 -0.068336 -0.945819 -1.502882
7 -0.946746 -0.222657  0.410326  1.412804
8 -0.379649  0.089457 -0.378820 -0.848689
9  0.944580  0.227600  1.040578  0.195827

# break it into pieces
In [51]: pieces = [df[:3], df[3:7], df[7:]]

In [52]: md.concat(pieces).execute()
Out[52]: 
          0         1         2         3
0 -0.744246 -0.820294 -0.218120  0.362971
1 -1.683835 -0.068356  0.001055 -0.629065
2 -0.851774  0.640352 -0.308788 -0.046406
3 -1.819059  0.263546  1.096967  1.692534
4 -2.515883 -0.037570  0.235536 -0.462660
5 -0.936556  0.693611  1.061610  1.087943
6  1.230238 -0.068336 -0.945819 -1.502882
7 -0.946746 -0.222657  0.410326  1.412804
8 -0.379649  0.089457 -0.378820 -0.848689
9  0.944580  0.227600  1.040578  0.195827

Note

Adding a column to a DataFrame is relatively fast. However, adding a row requires a copy, and may be expensive. We recommend passing a pre-built list of records to the DataFrame constructor instead of building a DataFrame by iteratively appending records to it.

Join#

SQL style merges. See the Database style joining section.

In [53]: left = md.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]})

In [54]: right = md.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]})

In [55]: left.execute()
Out[55]: 
   key  lval
0  foo     1
1  foo     2

In [56]: right.execute()
Out[56]: 
   key  rval
0  foo     4
1  foo     5

In [57]: md.merge(left, right, on='key').execute()
Out[57]: 
   key  lval  rval
0  foo     1     4
1  foo     1     5
2  foo     2     4
3  foo     2     5

Another example that can be given is:

In [58]: left = md.DataFrame({'key': ['foo', 'bar'], 'lval': [1, 2]})

In [59]: right = md.DataFrame({'key': ['foo', 'bar'], 'rval': [4, 5]})

In [60]: left.execute()
Out[60]: 
   key  lval
0  foo     1
1  bar     2

In [61]: right.execute()
Out[61]: 
   key  rval
0  foo     4
1  bar     5

In [62]: md.merge(left, right, on='key').execute()
Out[62]: 
   key  lval  rval
0  foo     1     4
1  bar     2     5

Grouping#

By “group by” we are referring to a process involving one or more of the following steps:

  • Splitting the data into groups based on some criteria

  • Applying a function to each group independently

  • Combining the results into a data structure

In [63]: df = md.DataFrame({'A': ['foo', 'bar', 'foo', 'bar',
   ....:                          'foo', 'bar', 'foo', 'foo'],
   ....:                    'B': ['one', 'one', 'two', 'three',
   ....:                          'two', 'two', 'one', 'three'],
   ....:                    'C': mt.random.randn(8),
   ....:                    'D': mt.random.randn(8)})
   ....: 

In [64]: df.execute()
Out[64]: 
     A      B         C         D
0  foo    one -0.665916  0.938514
1  bar    one  0.935748  1.129597
2  foo    two -1.309126  0.315047
3  bar  three  1.552172 -0.149467
4  foo    two -1.291504  0.313293
5  bar    two -1.589682 -0.283976
6  foo    one  2.244470 -1.790700
7  foo  three  0.316835  1.152761

Grouping and then applying the sum() function to the resulting groups.

In [65]: df.groupby('A').sum().execute()
Out[65]: 
            C         D
A                      
bar  0.898238  0.696155
foo -0.705240  0.928915

Grouping by multiple columns forms a hierarchical index, and again we can apply the sum function.

In [66]: df.groupby(['A', 'B']).sum().execute()
Out[66]: 
                  C         D
A   B                        
bar one    0.935748  1.129597
    three  1.552172 -0.149467
    two   -1.589682 -0.283976
foo one    1.578555 -0.852186
    three  0.316835  1.152761
    two   -2.600630  0.628340

Plotting#

We use the standard convention for referencing the matplotlib API:

In [67]: import matplotlib.pyplot as plt

In [68]: plt.close('all')
In [69]: ts = md.Series(mt.random.randn(1000),
   ....:                index=md.date_range('1/1/2000', periods=1000))
   ....: 

In [70]: ts = ts.cumsum()

In [71]: ts.plot()
Out[71]: <AxesSubplot:>
../../_images/series_plot_basic.png

On a DataFrame, the plot() method is a convenience to plot all of the columns with labels:

In [72]: df = md.DataFrame(mt.random.randn(1000, 4), index=ts.index,
   ....:                   columns=['A', 'B', 'C', 'D'])
   ....: 

In [73]: df = df.cumsum()

In [74]: plt.figure()
Out[74]: <Figure size 640x480 with 0 Axes>

In [75]: df.plot()
Out[75]: <AxesSubplot:>

In [76]: plt.legend(loc='best')
Out[76]: <matplotlib.legend.Legend at 0x7f307842a850>
../../_images/frame_plot_basic.png

Getting data in/out#

CSV#

In [77]: df.to_csv('foo.csv').execute()
Out[77]: 
Empty DataFrame
Columns: []
Index: []

Reading from a csv file.

In [78]: md.read_csv('foo.csv').execute()
Out[78]: 
     Unnamed: 0          A          B          C          D
0    2000-01-01  -0.148634   0.905379  -1.346986   0.256851
1    2000-01-02   2.242298   0.296500  -0.260887   0.248435
2    2000-01-03   2.828900  -0.649995  -1.834000  -0.136707
3    2000-01-04   0.338252  -0.974826  -0.755381   1.289598
4    2000-01-05  -0.593980  -1.436103   0.351157   1.847797
..          ...        ...        ...        ...        ...
995  2002-09-22  17.130050 -66.730427 -41.623043  -8.845876
996  2002-09-23  17.449925 -67.154070 -40.873604 -10.577547
997  2002-09-24  17.491354 -68.654259 -40.193393  -9.598333
998  2002-09-25  16.675418 -67.501809 -39.500102  -7.878921
999  2002-09-26  15.723870 -69.473105 -39.332906  -9.419267

[1000 rows x 5 columns]