10 minutes to Mars DataFrame#

This is a short introduction to Mars DataFrame which is originated from 10 minutes to pandas.

Customarily, we import as follows:

In [1]: import mars

In [2]: import mars.tensor as mt

In [3]: import mars.dataframe as md

Now create a new default session.

In [4]: mars.new_session()
Out[4]: <mars.deploy.oscar.session.SyncSession at 0x7f420c176e50>

Object creation#

Creating a Series by passing a list of values, letting it create a default integer index:

In [5]: s = md.Series([1, 3, 5, mt.nan, 6, 8])

In [6]: s.execute()
Out[6]: 
0    1.0
1    3.0
2    5.0
3    NaN
4    6.0
5    8.0
dtype: float64

Creating a DataFrame by passing a Mars tensor, with a datetime index and labeled columns:

In [7]: dates = md.date_range('20130101', periods=6)

In [8]: dates.execute()
Out[8]: 
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
               '2013-01-05', '2013-01-06'],
              dtype='datetime64[ns]', freq='D')

In [9]: df = md.DataFrame(mt.random.randn(6, 4), index=dates, columns=list('ABCD'))

In [10]: df.execute()
Out[10]: 
                   A         B         C         D
2013-01-01 -0.325072 -0.841215 -2.938900 -0.451186
2013-01-02 -0.069804  0.416590  0.717899 -1.160404
2013-01-03  0.719863  1.334628 -0.180214 -1.094916
2013-01-04 -0.803795  1.707443 -0.223362  0.248133
2013-01-05  2.337252 -0.178261  0.768658 -1.321603
2013-01-06 -0.003333  0.472268 -0.404336  0.528030

Creating a DataFrame by passing a dict of objects that can be converted to series-like.

In [11]: df2 = md.DataFrame({'A': 1.,
   ....:                     'B': md.Timestamp('20130102'),
   ....:                     'C': md.Series(1, index=list(range(4)), dtype='float32'),
   ....:                     'D': mt.array([3] * 4, dtype='int32'),
   ....:                     'E': 'foo'})
   ....: 

In [12]: df2.execute()
Out[12]: 
     A          B    C  D    E
0  1.0 2013-01-02  1.0  3  foo
1  1.0 2013-01-02  1.0  3  foo
2  1.0 2013-01-02  1.0  3  foo
3  1.0 2013-01-02  1.0  3  foo

The columns of the resulting DataFrame have different dtypes.

In [13]: df2.dtypes
Out[13]: 
A           float64
B    datetime64[ns]
C           float32
D             int32
E            object
dtype: object

Viewing data#

Here is how to view the top and bottom rows of the frame:

In [14]: df.head().execute()
Out[14]: 
                   A         B         C         D
2013-01-01 -0.325072 -0.841215 -2.938900 -0.451186
2013-01-02 -0.069804  0.416590  0.717899 -1.160404
2013-01-03  0.719863  1.334628 -0.180214 -1.094916
2013-01-04 -0.803795  1.707443 -0.223362  0.248133
2013-01-05  2.337252 -0.178261  0.768658 -1.321603

In [15]: df.tail(3).execute()
Out[15]: 
                   A         B         C         D
2013-01-04 -0.803795  1.707443 -0.223362  0.248133
2013-01-05  2.337252 -0.178261  0.768658 -1.321603
2013-01-06 -0.003333  0.472268 -0.404336  0.528030

Display the index, columns:

In [16]: df.index.execute()
Out[16]: 
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
               '2013-01-05', '2013-01-06'],
              dtype='datetime64[ns]', freq='D')

In [17]: df.columns.execute()
Out[17]: Index(['A', 'B', 'C', 'D'], dtype='object')

DataFrame.to_tensor() gives a Mars tensor representation of the underlying data. Note that this can be an expensive operation when your DataFrame has columns with different data types, which comes down to a fundamental difference between DataFrame and tensor: tensors have one dtype for the entire tensor, while DataFrames have one dtype per column. When you call DataFrame.to_tensor(), Mars DataFrame will find the tensor dtype that can hold all of the dtypes in the DataFrame. This may end up being object, which requires casting every value to a Python object.

For df, our DataFrame of all floating-point values, DataFrame.to_tensor() is fast and doesn’t require copying data.

In [18]: df.to_tensor().execute()
Out[18]: 
array([[-0.32507172, -0.84121472, -2.93889954, -0.45118569],
       [-0.06980403,  0.4165897 ,  0.71789866, -1.16040404],
       [ 0.7198634 ,  1.33462799, -0.18021438, -1.09491597],
       [-0.80379459,  1.70744348, -0.22336171,  0.24813313],
       [ 2.33725152, -0.17826103,  0.7686577 , -1.32160335],
       [-0.00333293,  0.47226789, -0.40433562,  0.52803039]])

For df2, the DataFrame with multiple dtypes, DataFrame.to_tensor() is relatively expensive.

In [19]: df2.to_tensor().execute()
Out[19]: 
array([[1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo'],
       [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo'],
       [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo'],
       [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo']],
      dtype=object)

Note

DataFrame.to_tensor() does not include the index or column labels in the output.

describe() shows a quick statistic summary of your data:

In [20]: df.describe().execute()
Out[20]: 
              A         B         C         D
count  6.000000  6.000000  6.000000  6.000000
mean   0.309185  0.485242 -0.376709 -0.541991
std    1.110317  0.940196  1.351868  0.784021
min   -0.803795 -0.841215 -2.938900 -1.321603
25%   -0.261255 -0.029548 -0.359092 -1.144032
50%   -0.036568  0.444429 -0.201788 -0.773051
75%    0.539064  1.119038  0.493370  0.073303
max    2.337252  1.707443  0.768658  0.528030

Sorting by an axis:

In [21]: df.sort_index(axis=1, ascending=False).execute()
Out[21]: 
                   D         C         B         A
2013-01-01 -0.451186 -2.938900 -0.841215 -0.325072
2013-01-02 -1.160404  0.717899  0.416590 -0.069804
2013-01-03 -1.094916 -0.180214  1.334628  0.719863
2013-01-04  0.248133 -0.223362  1.707443 -0.803795
2013-01-05 -1.321603  0.768658 -0.178261  2.337252
2013-01-06  0.528030 -0.404336  0.472268 -0.003333

Sorting by values:

In [22]: df.sort_values(by='B').execute()
Out[22]: 
                   A         B         C         D
2013-01-01 -0.325072 -0.841215 -2.938900 -0.451186
2013-01-05  2.337252 -0.178261  0.768658 -1.321603
2013-01-02 -0.069804  0.416590  0.717899 -1.160404
2013-01-06 -0.003333  0.472268 -0.404336  0.528030
2013-01-03  0.719863  1.334628 -0.180214 -1.094916
2013-01-04 -0.803795  1.707443 -0.223362  0.248133

Selection#

Note

While standard Python / Numpy expressions for selecting and setting are intuitive and come in handy for interactive work, for production code, we recommend the optimized DataFrame data access methods, .at, .iat, .loc and .iloc.

Getting#

Selecting a single column, which yields a Series, equivalent to df.A:

In [23]: df['A'].execute()
Out[23]: 
2013-01-01   -0.325072
2013-01-02   -0.069804
2013-01-03    0.719863
2013-01-04   -0.803795
2013-01-05    2.337252
2013-01-06   -0.003333
Freq: D, Name: A, dtype: float64

Selecting via [], which slices the rows.

In [24]: df[0:3].execute()
Out[24]: 
                   A         B         C         D
2013-01-01 -0.325072 -0.841215 -2.938900 -0.451186
2013-01-02 -0.069804  0.416590  0.717899 -1.160404
2013-01-03  0.719863  1.334628 -0.180214 -1.094916

In [25]: df['20130102':'20130104'].execute()
Out[25]: 
                   A         B         C         D
2013-01-02 -0.069804  0.416590  0.717899 -1.160404
2013-01-03  0.719863  1.334628 -0.180214 -1.094916
2013-01-04 -0.803795  1.707443 -0.223362  0.248133

Selection by label#

For getting a cross section using a label:

In [26]: df.loc['20130101'].execute()
Out[26]: 
A   -0.325072
B   -0.841215
C   -2.938900
D   -0.451186
Name: 2013-01-01 00:00:00, dtype: float64

Selecting on a multi-axis by label:

In [27]: df.loc[:, ['A', 'B']].execute()
Out[27]: 
                   A         B
2013-01-01 -0.325072 -0.841215
2013-01-02 -0.069804  0.416590
2013-01-03  0.719863  1.334628
2013-01-04 -0.803795  1.707443
2013-01-05  2.337252 -0.178261
2013-01-06 -0.003333  0.472268

Showing label slicing, both endpoints are included:

In [28]: df.loc['20130102':'20130104', ['A', 'B']].execute()
Out[28]: 
                   A         B
2013-01-02 -0.069804  0.416590
2013-01-03  0.719863  1.334628
2013-01-04 -0.803795  1.707443

Reduction in the dimensions of the returned object:

In [29]: df.loc['20130102', ['A', 'B']].execute()
Out[29]: 
A   -0.069804
B    0.416590
Name: 2013-01-02 00:00:00, dtype: float64

For getting a scalar value:

In [30]: df.loc['20130101', 'A'].execute()
Out[30]: -0.3250717215964995

For getting fast access to a scalar (equivalent to the prior method):

In [31]: df.at['20130101', 'A'].execute()
Out[31]: -0.3250717215964995

Selection by position#

Select via the position of the passed integers:

In [32]: df.iloc[3].execute()
Out[32]: 
A   -0.803795
B    1.707443
C   -0.223362
D    0.248133
Name: 2013-01-04 00:00:00, dtype: float64

By integer slices, acting similar to numpy/python:

In [33]: df.iloc[3:5, 0:2].execute()
Out[33]: 
                   A         B
2013-01-04 -0.803795  1.707443
2013-01-05  2.337252 -0.178261

By lists of integer position locations, similar to the numpy/python style:

In [34]: df.iloc[[1, 2, 4], [0, 2]].execute()
Out[34]: 
                   A         C
2013-01-02 -0.069804  0.717899
2013-01-03  0.719863 -0.180214
2013-01-05  2.337252  0.768658

For slicing rows explicitly:

In [35]: df.iloc[1:3, :].execute()
Out[35]: 
                   A         B         C         D
2013-01-02 -0.069804  0.416590  0.717899 -1.160404
2013-01-03  0.719863  1.334628 -0.180214 -1.094916

For slicing columns explicitly:

In [36]: df.iloc[:, 1:3].execute()
Out[36]: 
                   B         C
2013-01-01 -0.841215 -2.938900
2013-01-02  0.416590  0.717899
2013-01-03  1.334628 -0.180214
2013-01-04  1.707443 -0.223362
2013-01-05 -0.178261  0.768658
2013-01-06  0.472268 -0.404336

For getting a value explicitly:

In [37]: df.iloc[1, 1].execute()
Out[37]: 0.416589697239865

For getting fast access to a scalar (equivalent to the prior method):

In [38]: df.iat[1, 1].execute()
Out[38]: 0.416589697239865

Boolean indexing#

Using a single column’s values to select data.

In [39]: df[df['A'] > 0].execute()
Out[39]: 
                   A         B         C         D
2013-01-03  0.719863  1.334628 -0.180214 -1.094916
2013-01-05  2.337252 -0.178261  0.768658 -1.321603

Selecting values from a DataFrame where a boolean condition is met.

In [40]: df[df > 0].execute()
Out[40]: 
                   A         B         C         D
2013-01-01       NaN       NaN       NaN       NaN
2013-01-02       NaN  0.416590  0.717899       NaN
2013-01-03  0.719863  1.334628       NaN       NaN
2013-01-04       NaN  1.707443       NaN  0.248133
2013-01-05  2.337252       NaN  0.768658       NaN
2013-01-06       NaN  0.472268       NaN  0.528030

Operations#

Stats#

Operations in general exclude missing data.

Performing a descriptive statistic:

In [41]: df.mean().execute()
Out[41]: 
A    0.309185
B    0.485242
C   -0.376709
D   -0.541991
dtype: float64

Same operation on the other axis:

In [42]: df.mean(1).execute()
Out[42]: 
2013-01-01   -1.139093
2013-01-02   -0.023930
2013-01-03    0.194840
2013-01-04    0.232105
2013-01-05    0.401511
2013-01-06    0.148157
Freq: D, dtype: float64

Operating with objects that have different dimensionality and need alignment. In addition, Mars DataFrame automatically broadcasts along the specified dimension.

In [43]: s = md.Series([1, 3, 5, mt.nan, 6, 8], index=dates).shift(2)

In [44]: s.execute()
Out[44]: 
2013-01-01    NaN
2013-01-02    NaN
2013-01-03    1.0
2013-01-04    3.0
2013-01-05    5.0
2013-01-06    NaN
Freq: D, dtype: float64

In [45]: df.sub(s, axis='index').execute()
Out[45]: 
                   A         B         C         D
2013-01-01       NaN       NaN       NaN       NaN
2013-01-02       NaN       NaN       NaN       NaN
2013-01-03 -0.280137  0.334628 -1.180214 -2.094916
2013-01-04 -3.803795 -1.292557 -3.223362 -2.751867
2013-01-05 -2.662748 -5.178261 -4.231342 -6.321603
2013-01-06       NaN       NaN       NaN       NaN

Apply#

Applying functions to the data:

In [46]: df.apply(lambda x: x.max() - x.min()).execute()
Out[46]: 
A    3.141046
B    2.548658
C    3.707557
D    1.849634
dtype: float64

String Methods#

Series is equipped with a set of string processing methods in the str attribute that make it easy to operate on each element of the array, as in the code snippet below. Note that pattern-matching in str generally uses regular expressions by default (and in some cases always uses them). See more at Vectorized String Methods.

In [47]: s = md.Series(['A', 'B', 'C', 'Aaba', 'Baca', mt.nan, 'CABA', 'dog', 'cat'])

In [48]: s.str.lower().execute()
Out[48]: 
0       a
1       b
2       c
3    aaba
4    baca
5     NaN
6    caba
7     dog
8     cat
dtype: object

Merge#

Concat#

Mars DataFrame provides various facilities for easily combining together Series and DataFrame objects with various kinds of set logic for the indexes and relational algebra functionality in the case of join / merge-type operations.

Concatenating DataFrame objects together with concat():

In [49]: df = md.DataFrame(mt.random.randn(10, 4))

In [50]: df.execute()
Out[50]: 
          0         1         2         3
0 -0.111168 -0.610583  0.944961  0.223291
1  0.871924  0.227515  0.045617 -0.238502
2 -0.231006  0.047014 -0.171016  0.196644
3 -0.565967  1.921934  1.829373 -1.526664
4 -0.466027  0.940561 -0.046651 -0.799098
5  1.439973  0.055666 -0.326876  0.080001
6  1.806012  0.146856  1.157681 -1.441006
7  0.895919  0.842091  0.314105  0.879768
8  1.128261 -0.498494  1.050752 -1.233651
9  0.905677  0.354411  0.034853 -0.311034

# break it into pieces
In [51]: pieces = [df[:3], df[3:7], df[7:]]

In [52]: md.concat(pieces).execute()
Out[52]: 
          0         1         2         3
0 -0.111168 -0.610583  0.944961  0.223291
1  0.871924  0.227515  0.045617 -0.238502
2 -0.231006  0.047014 -0.171016  0.196644
3 -0.565967  1.921934  1.829373 -1.526664
4 -0.466027  0.940561 -0.046651 -0.799098
5  1.439973  0.055666 -0.326876  0.080001
6  1.806012  0.146856  1.157681 -1.441006
7  0.895919  0.842091  0.314105  0.879768
8  1.128261 -0.498494  1.050752 -1.233651
9  0.905677  0.354411  0.034853 -0.311034

Note

Adding a column to a DataFrame is relatively fast. However, adding a row requires a copy, and may be expensive. We recommend passing a pre-built list of records to the DataFrame constructor instead of building a DataFrame by iteratively appending records to it.

Join#

SQL style merges. See the Database style joining section.

In [53]: left = md.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]})

In [54]: right = md.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]})

In [55]: left.execute()
Out[55]: 
   key  lval
0  foo     1
1  foo     2

In [56]: right.execute()
Out[56]: 
   key  rval
0  foo     4
1  foo     5

In [57]: md.merge(left, right, on='key').execute()
Out[57]: 
   key  lval  rval
0  foo     1     4
1  foo     1     5
2  foo     2     4
3  foo     2     5

Another example that can be given is:

In [58]: left = md.DataFrame({'key': ['foo', 'bar'], 'lval': [1, 2]})

In [59]: right = md.DataFrame({'key': ['foo', 'bar'], 'rval': [4, 5]})

In [60]: left.execute()
Out[60]: 
   key  lval
0  foo     1
1  bar     2

In [61]: right.execute()
Out[61]: 
   key  rval
0  foo     4
1  bar     5

In [62]: md.merge(left, right, on='key').execute()
Out[62]: 
   key  lval  rval
0  foo     1     4
1  bar     2     5

Grouping#

By “group by” we are referring to a process involving one or more of the following steps:

  • Splitting the data into groups based on some criteria

  • Applying a function to each group independently

  • Combining the results into a data structure

In [63]: df = md.DataFrame({'A': ['foo', 'bar', 'foo', 'bar',
   ....:                          'foo', 'bar', 'foo', 'foo'],
   ....:                    'B': ['one', 'one', 'two', 'three',
   ....:                          'two', 'two', 'one', 'three'],
   ....:                    'C': mt.random.randn(8),
   ....:                    'D': mt.random.randn(8)})
   ....: 

In [64]: df.execute()
Out[64]: 
     A      B         C         D
0  foo    one  0.135101  0.588976
1  bar    one  1.010377  1.776787
2  foo    two -0.150991  0.347054
3  bar  three  0.854944 -0.564876
4  foo    two  0.382478  0.676850
5  bar    two  1.289967  1.699737
6  foo    one  1.087797 -0.538354
7  foo  three -0.386876  0.054309

Grouping and then applying the sum() function to the resulting groups.

In [65]: df.groupby('A').sum().execute()
Out[65]: 
            C         D
A                      
bar  3.155288  2.911648
foo  1.067509  1.128835

Grouping by multiple columns forms a hierarchical index, and again we can apply the sum function.

In [66]: df.groupby(['A', 'B']).sum().execute()
Out[66]: 
                  C         D
A   B                        
bar one    1.010377  1.776787
    three  0.854944 -0.564876
    two    1.289967  1.699737
foo one    1.222897  0.050622
    three -0.386876  0.054309
    two    0.231488  1.023904

Plotting#

We use the standard convention for referencing the matplotlib API:

In [67]: import matplotlib.pyplot as plt

In [68]: plt.close('all')
In [69]: ts = md.Series(mt.random.randn(1000),
   ....:                index=md.date_range('1/1/2000', periods=1000))
   ....: 

In [70]: ts = ts.cumsum()

In [71]: ts.plot()
Out[71]: <AxesSubplot:>
../../_images/series_plot_basic.png

On a DataFrame, the plot() method is a convenience to plot all of the columns with labels:

In [72]: df = md.DataFrame(mt.random.randn(1000, 4), index=ts.index,
   ....:                   columns=['A', 'B', 'C', 'D'])
   ....: 

In [73]: df = df.cumsum()

In [74]: plt.figure()
Out[74]: <Figure size 640x480 with 0 Axes>

In [75]: df.plot()
Out[75]: <AxesSubplot:>

In [76]: plt.legend(loc='best')
Out[76]: <matplotlib.legend.Legend at 0x7f420f608f10>
../../_images/frame_plot_basic.png

Getting data in/out#

CSV#

In [77]: df.to_csv('foo.csv').execute()
Out[77]: 
Empty DataFrame
Columns: []
Index: []

Reading from a csv file.

In [78]: md.read_csv('foo.csv').execute()
Out[78]: 
     Unnamed: 0          A          B          C          D
0    2000-01-01  -1.709990  -0.503212   1.080806   0.210275
1    2000-01-02  -2.039664  -1.015497   0.232424  -0.487611
2    2000-01-03  -2.992595   0.597305   1.044619  -2.042844
3    2000-01-04  -3.660657   2.636786   0.147946  -1.866936
4    2000-01-05  -4.155412   1.724421   0.436242  -1.675198
..          ...        ...        ...        ...        ...
995  2002-09-22  30.655625  33.853597 -27.704002 -12.458389
996  2002-09-23  32.730193  34.456705 -27.188329 -12.418444
997  2002-09-24  32.100591  34.892548 -27.246512 -12.208398
998  2002-09-25  30.923473  36.485384 -27.548312 -13.093134
999  2002-09-26  30.587739  36.645095 -27.500490 -12.112284

[1000 rows x 5 columns]