10 minutes to Mars DataFrame

This is a short introduction to Mars DataFrame which is originated from 10 minutes to pandas.

Customarily, we import as follows:

In [1]: import mars

In [2]: import mars.tensor as mt

In [3]: import mars.dataframe as md

Now create a new default session.

In [4]: mars.new_session()
Out[4]: <mars.deploy.oscar.session.SyncSession at 0x7f668261e090>

Object creation

Creating a Series by passing a list of values, letting it create a default integer index:

In [5]: s = md.Series([1, 3, 5, mt.nan, 6, 8])

In [6]: s.execute()
Out[6]: 
0    1.0
1    3.0
2    5.0
3    NaN
4    6.0
5    8.0
dtype: float64

Creating a DataFrame by passing a Mars tensor, with a datetime index and labeled columns:

In [7]: dates = md.date_range('20130101', periods=6)

In [8]: dates.execute()
Out[8]: 
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
               '2013-01-05', '2013-01-06'],
              dtype='datetime64[ns]', freq='D')

In [9]: df = md.DataFrame(mt.random.randn(6, 4), index=dates, columns=list('ABCD'))

In [10]: df.execute()
Out[10]: 
                   A         B         C         D
2013-01-01  0.336408 -0.591179  1.669736 -2.376495
2013-01-02 -0.265843 -1.364178  0.195668 -0.111914
2013-01-03  0.588897  1.824482  0.803117 -0.759495
2013-01-04  0.736645  0.612289  0.242060 -1.125579
2013-01-05 -1.997406  1.471966 -1.483082 -0.912298
2013-01-06 -0.520070 -0.154318  1.329614  0.997960

Creating a DataFrame by passing a dict of objects that can be converted to series-like.

In [11]: df2 = md.DataFrame({'A': 1.,
   ....:                     'B': md.Timestamp('20130102'),
   ....:                     'C': md.Series(1, index=list(range(4)), dtype='float32'),
   ....:                     'D': mt.array([3] * 4, dtype='int32'),
   ....:                     'E': 'foo'})
   ....: 

In [12]: df2.execute()
Out[12]: 
     A          B    C  D    E
0  1.0 2013-01-02  1.0  3  foo
1  1.0 2013-01-02  1.0  3  foo
2  1.0 2013-01-02  1.0  3  foo
3  1.0 2013-01-02  1.0  3  foo

The columns of the resulting DataFrame have different dtypes.

In [13]: df2.dtypes
Out[13]: 
A           float64
B    datetime64[ns]
C           float32
D             int32
E            object
dtype: object

Viewing data

Here is how to view the top and bottom rows of the frame:

In [14]: df.head().execute()
Out[14]: 
                   A         B         C         D
2013-01-01  0.336408 -0.591179  1.669736 -2.376495
2013-01-02 -0.265843 -1.364178  0.195668 -0.111914
2013-01-03  0.588897  1.824482  0.803117 -0.759495
2013-01-04  0.736645  0.612289  0.242060 -1.125579
2013-01-05 -1.997406  1.471966 -1.483082 -0.912298

In [15]: df.tail(3).execute()
Out[15]: 
                   A         B         C         D
2013-01-04  0.736645  0.612289  0.242060 -1.125579
2013-01-05 -1.997406  1.471966 -1.483082 -0.912298
2013-01-06 -0.520070 -0.154318  1.329614  0.997960

Display the index, columns:

In [16]: df.index.execute()
Out[16]: 
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
               '2013-01-05', '2013-01-06'],
              dtype='datetime64[ns]', freq='D')

In [17]: df.columns.execute()
Out[17]: Index(['A', 'B', 'C', 'D'], dtype='object')

DataFrame.to_tensor() gives a Mars tensor representation of the underlying data. Note that this can be an expensive operation when your DataFrame has columns with different data types, which comes down to a fundamental difference between DataFrame and tensor: tensors have one dtype for the entire tensor, while DataFrames have one dtype per column. When you call DataFrame.to_tensor(), Mars DataFrame will find the tensor dtype that can hold all of the dtypes in the DataFrame. This may end up being object, which requires casting every value to a Python object.

For df, our DataFrame of all floating-point values, DataFrame.to_tensor() is fast and doesn’t require copying data.

In [18]: df.to_tensor().execute()
Out[18]: 
array([[ 0.33640776, -0.59117852,  1.66973576, -2.37649455],
       [-0.26584289, -1.3641777 ,  0.19566803, -0.11191423],
       [ 0.5888971 ,  1.82448223,  0.80311717, -0.75949523],
       [ 0.73664506,  0.61228856,  0.24206002, -1.12557932],
       [-1.99740639,  1.47196586, -1.48308238, -0.91229808],
       [-0.52006996, -0.15431756,  1.32961439,  0.99795983]])

For df2, the DataFrame with multiple dtypes, DataFrame.to_tensor() is relatively expensive.

In [19]: df2.to_tensor().execute()
Out[19]: 
array([[1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo'],
       [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo'],
       [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo'],
       [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo']],
      dtype=object)

Note

DataFrame.to_tensor() does not include the index or column labels in the output.

describe() shows a quick statistic summary of your data:

In [20]: df.describe().execute()
Out[20]: 
              A         B         C         D
count  6.000000  6.000000  6.000000  6.000000
mean  -0.186895  0.299844  0.459519 -0.714637
std    1.012306  1.230054  1.116276  1.119642
min   -1.997406 -1.364178 -1.483082 -2.376495
25%   -0.456513 -0.481963  0.207266 -1.072259
50%    0.035282  0.228986  0.522589 -0.835897
75%    0.525775  1.257047  1.197990 -0.273809
max    0.736645  1.824482  1.669736  0.997960

Sorting by an axis:

In [21]: df.sort_index(axis=1, ascending=False).execute()
Out[21]: 
                   D         C         B         A
2013-01-01 -2.376495  1.669736 -0.591179  0.336408
2013-01-02 -0.111914  0.195668 -1.364178 -0.265843
2013-01-03 -0.759495  0.803117  1.824482  0.588897
2013-01-04 -1.125579  0.242060  0.612289  0.736645
2013-01-05 -0.912298 -1.483082  1.471966 -1.997406
2013-01-06  0.997960  1.329614 -0.154318 -0.520070

Sorting by values:

In [22]: df.sort_values(by='B').execute()
Out[22]: 
                   A         B         C         D
2013-01-02 -0.265843 -1.364178  0.195668 -0.111914
2013-01-01  0.336408 -0.591179  1.669736 -2.376495
2013-01-06 -0.520070 -0.154318  1.329614  0.997960
2013-01-04  0.736645  0.612289  0.242060 -1.125579
2013-01-05 -1.997406  1.471966 -1.483082 -0.912298
2013-01-03  0.588897  1.824482  0.803117 -0.759495

Selection

Note

While standard Python / Numpy expressions for selecting and setting are intuitive and come in handy for interactive work, for production code, we recommend the optimized DataFrame data access methods, .at, .iat, .loc and .iloc.

Getting

Selecting a single column, which yields a Series, equivalent to df.A:

In [23]: df['A'].execute()
Out[23]: 
2013-01-01    0.336408
2013-01-02   -0.265843
2013-01-03    0.588897
2013-01-04    0.736645
2013-01-05   -1.997406
2013-01-06   -0.520070
Freq: D, Name: A, dtype: float64

Selecting via [], which slices the rows.

In [24]: df[0:3].execute()
Out[24]: 
                   A         B         C         D
2013-01-01  0.336408 -0.591179  1.669736 -2.376495
2013-01-02 -0.265843 -1.364178  0.195668 -0.111914
2013-01-03  0.588897  1.824482  0.803117 -0.759495

In [25]: df['20130102':'20130104'].execute()
Out[25]: 
                   A         B         C         D
2013-01-02 -0.265843 -1.364178  0.195668 -0.111914
2013-01-03  0.588897  1.824482  0.803117 -0.759495
2013-01-04  0.736645  0.612289  0.242060 -1.125579

Selection by label

For getting a cross section using a label:

In [26]: df.loc['20130101'].execute()
Out[26]: 
A    0.336408
B   -0.591179
C    1.669736
D   -2.376495
Name: 2013-01-01 00:00:00, dtype: float64

Selecting on a multi-axis by label:

In [27]: df.loc[:, ['A', 'B']].execute()
Out[27]: 
                   A         B
2013-01-01  0.336408 -0.591179
2013-01-02 -0.265843 -1.364178
2013-01-03  0.588897  1.824482
2013-01-04  0.736645  0.612289
2013-01-05 -1.997406  1.471966
2013-01-06 -0.520070 -0.154318

Showing label slicing, both endpoints are included:

In [28]: df.loc['20130102':'20130104', ['A', 'B']].execute()
Out[28]: 
                   A         B
2013-01-02 -0.265843 -1.364178
2013-01-03  0.588897  1.824482
2013-01-04  0.736645  0.612289

Reduction in the dimensions of the returned object:

In [29]: df.loc['20130102', ['A', 'B']].execute()
Out[29]: 
A   -0.265843
B   -1.364178
Name: 2013-01-02 00:00:00, dtype: float64

For getting a scalar value:

In [30]: df.loc['20130101', 'A'].execute()
Out[30]: 0.3364077559427176

For getting fast access to a scalar (equivalent to the prior method):

In [31]: df.at['20130101', 'A'].execute()
Out[31]: 0.3364077559427176

Selection by position

Select via the position of the passed integers:

In [32]: df.iloc[3].execute()
Out[32]: 
A    0.736645
B    0.612289
C    0.242060
D   -1.125579
Name: 2013-01-04 00:00:00, dtype: float64

By integer slices, acting similar to numpy/python:

In [33]: df.iloc[3:5, 0:2].execute()
Out[33]: 
                   A         B
2013-01-04  0.736645  0.612289
2013-01-05 -1.997406  1.471966

By lists of integer position locations, similar to the numpy/python style:

In [34]: df.iloc[[1, 2, 4], [0, 2]].execute()
Out[34]: 
                   A         C
2013-01-02 -0.265843  0.195668
2013-01-03  0.588897  0.803117
2013-01-05 -1.997406 -1.483082

For slicing rows explicitly:

In [35]: df.iloc[1:3, :].execute()
Out[35]: 
                   A         B         C         D
2013-01-02 -0.265843 -1.364178  0.195668 -0.111914
2013-01-03  0.588897  1.824482  0.803117 -0.759495

For slicing columns explicitly:

In [36]: df.iloc[:, 1:3].execute()
Out[36]: 
                   B         C
2013-01-01 -0.591179  1.669736
2013-01-02 -1.364178  0.195668
2013-01-03  1.824482  0.803117
2013-01-04  0.612289  0.242060
2013-01-05  1.471966 -1.483082
2013-01-06 -0.154318  1.329614

For getting a value explicitly:

In [37]: df.iloc[1, 1].execute()
Out[37]: -1.3641777004270788

For getting fast access to a scalar (equivalent to the prior method):

In [38]: df.iat[1, 1].execute()
Out[38]: -1.3641777004270788

Boolean indexing

Using a single column’s values to select data.

In [39]: df[df['A'] > 0].execute()
Out[39]: 
                   A         B         C         D
2013-01-01  0.336408 -0.591179  1.669736 -2.376495
2013-01-03  0.588897  1.824482  0.803117 -0.759495
2013-01-04  0.736645  0.612289  0.242060 -1.125579

Selecting values from a DataFrame where a boolean condition is met.

In [40]: df[df > 0].execute()
Out[40]: 
                   A         B         C        D
2013-01-01  0.336408       NaN  1.669736      NaN
2013-01-02       NaN       NaN  0.195668      NaN
2013-01-03  0.588897  1.824482  0.803117      NaN
2013-01-04  0.736645  0.612289  0.242060      NaN
2013-01-05       NaN  1.471966       NaN      NaN
2013-01-06       NaN       NaN  1.329614  0.99796

Operations

Stats

Operations in general exclude missing data.

Performing a descriptive statistic:

In [41]: df.mean().execute()
Out[41]: 
A   -0.186895
B    0.299844
C    0.459519
D   -0.714637
dtype: float64

Same operation on the other axis:

In [42]: df.mean(1).execute()
Out[42]: 
2013-01-01   -0.240382
2013-01-02   -0.386567
2013-01-03    0.614250
2013-01-04    0.116354
2013-01-05   -0.730205
2013-01-06    0.413297
Freq: D, dtype: float64

Operating with objects that have different dimensionality and need alignment. In addition, Mars DataFrame automatically broadcasts along the specified dimension.

In [43]: s = md.Series([1, 3, 5, mt.nan, 6, 8], index=dates).shift(2)

In [44]: s.execute()
Out[44]: 
2013-01-01    NaN
2013-01-02    NaN
2013-01-03    1.0
2013-01-04    3.0
2013-01-05    5.0
2013-01-06    NaN
Freq: D, dtype: float64

In [45]: df.sub(s, axis='index').execute()
Out[45]: 
                   A         B         C         D
2013-01-01       NaN       NaN       NaN       NaN
2013-01-02       NaN       NaN       NaN       NaN
2013-01-03 -0.411103  0.824482 -0.196883 -1.759495
2013-01-04 -2.263355 -2.387711 -2.757940 -4.125579
2013-01-05 -6.997406 -3.528034 -6.483082 -5.912298
2013-01-06       NaN       NaN       NaN       NaN

Apply

Applying functions to the data:

In [46]: df.apply(lambda x: x.max() - x.min()).execute()
Out[46]: 
A    2.734051
B    3.188660
C    3.152818
D    3.374454
dtype: float64

String Methods

Series is equipped with a set of string processing methods in the str attribute that make it easy to operate on each element of the array, as in the code snippet below. Note that pattern-matching in str generally uses regular expressions by default (and in some cases always uses them). See more at Vectorized String Methods.

In [47]: s = md.Series(['A', 'B', 'C', 'Aaba', 'Baca', mt.nan, 'CABA', 'dog', 'cat'])

In [48]: s.str.lower().execute()
Out[48]: 
0       a
1       b
2       c
3    aaba
4    baca
5     NaN
6    caba
7     dog
8     cat
dtype: object

Merge

Concat

Mars DataFrame provides various facilities for easily combining together Series and DataFrame objects with various kinds of set logic for the indexes and relational algebra functionality in the case of join / merge-type operations.

Concatenating DataFrame objects together with concat():

In [49]: df = md.DataFrame(mt.random.randn(10, 4))

In [50]: df.execute()
Out[50]: 
          0         1         2         3
0 -0.569280 -1.019281 -0.051854  1.074545
1  0.528347 -0.402079 -1.007305 -0.207577
2 -0.918585  1.258735 -0.424030  1.458511
3  0.503231  0.082010  2.110152 -0.688240
4 -0.584119  0.145481 -0.887561 -0.192745
5 -1.463052 -1.944418 -1.349207 -0.046024
6  1.992561  0.951382  1.058893  1.171185
7  1.991618  0.045671 -0.003086 -0.728965
8  0.280105 -0.372272  0.977936 -1.490267
9 -0.360202  0.762831  0.030429  0.448750

# break it into pieces
In [51]: pieces = [df[:3], df[3:7], df[7:]]

In [52]: md.concat(pieces).execute()
Out[52]: 
          0         1         2         3
0 -0.569280 -1.019281 -0.051854  1.074545
1  0.528347 -0.402079 -1.007305 -0.207577
2 -0.918585  1.258735 -0.424030  1.458511
3  0.503231  0.082010  2.110152 -0.688240
4 -0.584119  0.145481 -0.887561 -0.192745
5 -1.463052 -1.944418 -1.349207 -0.046024
6  1.992561  0.951382  1.058893  1.171185
7  1.991618  0.045671 -0.003086 -0.728965
8  0.280105 -0.372272  0.977936 -1.490267
9 -0.360202  0.762831  0.030429  0.448750

Note

Adding a column to a DataFrame is relatively fast. However, adding a row requires a copy, and may be expensive. We recommend passing a pre-built list of records to the DataFrame constructor instead of building a DataFrame by iteratively appending records to it.

Join

SQL style merges. See the Database style joining section.

In [53]: left = md.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]})

In [54]: right = md.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]})

In [55]: left.execute()
Out[55]: 
   key  lval
0  foo     1
1  foo     2

In [56]: right.execute()
Out[56]: 
   key  rval
0  foo     4
1  foo     5

In [57]: md.merge(left, right, on='key').execute()
Out[57]: 
   key  lval  rval
0  foo     1     4
1  foo     1     5
2  foo     2     4
3  foo     2     5

Another example that can be given is:

In [58]: left = md.DataFrame({'key': ['foo', 'bar'], 'lval': [1, 2]})

In [59]: right = md.DataFrame({'key': ['foo', 'bar'], 'rval': [4, 5]})

In [60]: left.execute()
Out[60]: 
   key  lval
0  foo     1
1  bar     2

In [61]: right.execute()
Out[61]: 
   key  rval
0  foo     4
1  bar     5

In [62]: md.merge(left, right, on='key').execute()
Out[62]: 
   key  lval  rval
0  foo     1     4
1  bar     2     5

Grouping

By “group by” we are referring to a process involving one or more of the following steps:

  • Splitting the data into groups based on some criteria

  • Applying a function to each group independently

  • Combining the results into a data structure

In [63]: df = md.DataFrame({'A': ['foo', 'bar', 'foo', 'bar',
   ....:                          'foo', 'bar', 'foo', 'foo'],
   ....:                    'B': ['one', 'one', 'two', 'three',
   ....:                          'two', 'two', 'one', 'three'],
   ....:                    'C': mt.random.randn(8),
   ....:                    'D': mt.random.randn(8)})
   ....: 

In [64]: df.execute()
Out[64]: 
     A      B         C         D
0  foo    one  0.151781 -0.695650
1  bar    one -0.457911  1.668589
2  foo    two  1.218667  0.626749
3  bar  three -1.018252  0.609330
4  foo    two -1.239349  1.233556
5  bar    two  0.474177  1.136801
6  foo    one -1.388867  0.349432
7  foo  three  0.032801  1.307410

Grouping and then applying the sum() function to the resulting groups.

In [65]: df.groupby('A').sum().execute()
Out[65]: 
            C         D
A                      
bar -1.001986  3.414720
foo -1.224967  2.821499

Grouping by multiple columns forms a hierarchical index, and again we can apply the sum function.

In [66]: df.groupby(['A', 'B']).sum().execute()
Out[66]: 
                  C         D
A   B                        
bar one   -0.457911  1.668589
    three -1.018252  0.609330
    two    0.474177  1.136801
foo one   -1.237086 -0.346217
    three  0.032801  1.307410
    two   -0.020682  1.860306

Plotting

We use the standard convention for referencing the matplotlib API:

In [67]: import matplotlib.pyplot as plt

In [68]: plt.close('all')
In [69]: ts = md.Series(mt.random.randn(1000),
   ....:                index=md.date_range('1/1/2000', periods=1000))
   ....: 

In [70]: ts = ts.cumsum()

In [71]: ts.plot()
Out[71]: <AxesSubplot:>
../../_images/series_plot_basic.png

On a DataFrame, the plot() method is a convenience to plot all of the columns with labels:

In [72]: df = md.DataFrame(mt.random.randn(1000, 4), index=ts.index,
   ....:                   columns=['A', 'B', 'C', 'D'])
   ....: 

In [73]: df = df.cumsum()

In [74]: plt.figure()
Out[74]: <Figure size 640x480 with 0 Axes>

In [75]: df.plot()
Out[75]: <AxesSubplot:>

In [76]: plt.legend(loc='best')
Out[76]: <matplotlib.legend.Legend at 0x7f6686e6cf90>
../../_images/frame_plot_basic.png

Getting data in/out

CSV

In [77]: df.to_csv('foo.csv').execute()
Out[77]: 
Empty DataFrame
Columns: []
Index: []

Reading from a csv file.

In [78]: md.read_csv('foo.csv').execute()
Out[78]: 
     Unnamed: 0          A          B          C          D
0    2000-01-01   1.654730   0.034190   1.592940   0.114646
1    2000-01-02   0.182614   0.097960   2.175979  -1.989463
2    2000-01-03  -0.832394   1.003577   1.818398  -2.193297
3    2000-01-04  -1.297659   0.608756   2.489221  -1.960197
4    2000-01-05   0.181572   2.757184   2.221153  -0.768151
..          ...        ...        ...        ...        ...
995  2002-09-22 -53.725808  14.149430  52.744021 -63.883534
996  2002-09-23 -53.912809  13.219599  53.681973 -63.495749
997  2002-09-24 -52.332776  14.164051  56.389689 -63.304450
998  2002-09-25 -51.487259  14.324083  57.955803 -63.418465
999  2002-09-26 -52.553009  13.501106  56.709544 -60.787730

[1000 rows x 5 columns]