10 minutes to Mars DataFrame

This is a short introduction to Mars DataFrame which is originated from 10 minutes to pandas.

Customarily, we import as follows:

In [1]: import mars

In [2]: import mars.tensor as mt

In [3]: import mars.dataframe as md

Now create a new default session.

In [4]: mars.new_session()
Out[4]: <mars.deploy.oscar.session.SyncSession at 0x7efb742dd350>

Object creation

Creating a Series by passing a list of values, letting it create a default integer index:

In [5]: s = md.Series([1, 3, 5, mt.nan, 6, 8])

In [6]: s.execute()
Out[6]: 
0    1.0
1    3.0
2    5.0
3    NaN
4    6.0
5    8.0
dtype: float64

Creating a DataFrame by passing a Mars tensor, with a datetime index and labeled columns:

In [7]: dates = md.date_range('20130101', periods=6)

In [8]: dates.execute()
Out[8]: 
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
               '2013-01-05', '2013-01-06'],
              dtype='datetime64[ns]', freq='D')

In [9]: df = md.DataFrame(mt.random.randn(6, 4), index=dates, columns=list('ABCD'))

In [10]: df.execute()
Out[10]: 
                   A         B         C         D
2013-01-01 -0.126299  1.264629  1.756465 -0.785511
2013-01-02  0.992830  0.394886 -0.808420 -0.681974
2013-01-03  1.083691 -0.113957  1.493871  2.664410
2013-01-04 -1.157074 -0.158821 -2.012260  1.202826
2013-01-05 -1.744805 -0.966685  0.935808  0.615988
2013-01-06  0.061212 -0.330839 -0.468423 -0.927937

Creating a DataFrame by passing a dict of objects that can be converted to series-like.

In [11]: df2 = md.DataFrame({'A': 1.,
   ....:                     'B': md.Timestamp('20130102'),
   ....:                     'C': md.Series(1, index=list(range(4)), dtype='float32'),
   ....:                     'D': mt.array([3] * 4, dtype='int32'),
   ....:                     'E': 'foo'})
   ....: 

In [12]: df2.execute()
Out[12]: 
     A          B    C  D    E
0  1.0 2013-01-02  1.0  3  foo
1  1.0 2013-01-02  1.0  3  foo
2  1.0 2013-01-02  1.0  3  foo
3  1.0 2013-01-02  1.0  3  foo

The columns of the resulting DataFrame have different dtypes.

In [13]: df2.dtypes
Out[13]: 
A           float64
B    datetime64[ns]
C           float32
D             int32
E            object
dtype: object

Viewing data

Here is how to view the top and bottom rows of the frame:

In [14]: df.head().execute()
Out[14]: 
                   A         B         C         D
2013-01-01 -0.126299  1.264629  1.756465 -0.785511
2013-01-02  0.992830  0.394886 -0.808420 -0.681974
2013-01-03  1.083691 -0.113957  1.493871  2.664410
2013-01-04 -1.157074 -0.158821 -2.012260  1.202826
2013-01-05 -1.744805 -0.966685  0.935808  0.615988

In [15]: df.tail(3).execute()
Out[15]: 
                   A         B         C         D
2013-01-04 -1.157074 -0.158821 -2.012260  1.202826
2013-01-05 -1.744805 -0.966685  0.935808  0.615988
2013-01-06  0.061212 -0.330839 -0.468423 -0.927937

Display the index, columns:

In [16]: df.index.execute()
Out[16]: 
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
               '2013-01-05', '2013-01-06'],
              dtype='datetime64[ns]', freq='D')

In [17]: df.columns.execute()
Out[17]: Index(['A', 'B', 'C', 'D'], dtype='object')

DataFrame.to_tensor() gives a Mars tensor representation of the underlying data. Note that this can be an expensive operation when your DataFrame has columns with different data types, which comes down to a fundamental difference between DataFrame and tensor: tensors have one dtype for the entire tensor, while DataFrames have one dtype per column. When you call DataFrame.to_tensor(), Mars DataFrame will find the tensor dtype that can hold all of the dtypes in the DataFrame. This may end up being object, which requires casting every value to a Python object.

For df, our DataFrame of all floating-point values, DataFrame.to_tensor() is fast and doesn’t require copying data.

In [18]: df.to_tensor().execute()
Out[18]: 
array([[-0.12629922,  1.26462895,  1.75646523, -0.7855111 ],
       [ 0.99283028,  0.39488617, -0.80842043, -0.6819743 ],
       [ 1.08369102, -0.11395731,  1.49387063,  2.66440973],
       [-1.1570743 , -0.15882131, -2.01225998,  1.20282606],
       [-1.74480452, -0.96668512,  0.93580838,  0.61598812],
       [ 0.06121177, -0.33083876, -0.46842291, -0.92793697]])

For df2, the DataFrame with multiple dtypes, DataFrame.to_tensor() is relatively expensive.

In [19]: df2.to_tensor().execute()
Out[19]: 
array([[1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo'],
       [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo'],
       [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo'],
       [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo']],
      dtype=object)

Note

DataFrame.to_tensor() does not include the index or column labels in the output.

describe() shows a quick statistic summary of your data:

In [20]: df.describe().execute()
Out[20]: 
              A         B         C         D
count  6.000000  6.000000  6.000000  6.000000
mean  -0.148407  0.014869  0.149507  0.347967
std    1.134091  0.753132  1.481931  1.424220
min   -1.744805 -0.966685 -2.012260 -0.927937
25%   -0.899381 -0.287834 -0.723421 -0.759627
50%   -0.032544 -0.136389  0.233693 -0.032993
75%    0.759926  0.267675  1.354355  1.056117
max    1.083691  1.264629  1.756465  2.664410

Sorting by an axis:

In [21]: df.sort_index(axis=1, ascending=False).execute()
Out[21]: 
                   D         C         B         A
2013-01-01 -0.785511  1.756465  1.264629 -0.126299
2013-01-02 -0.681974 -0.808420  0.394886  0.992830
2013-01-03  2.664410  1.493871 -0.113957  1.083691
2013-01-04  1.202826 -2.012260 -0.158821 -1.157074
2013-01-05  0.615988  0.935808 -0.966685 -1.744805
2013-01-06 -0.927937 -0.468423 -0.330839  0.061212

Sorting by values:

In [22]: df.sort_values(by='B').execute()
Out[22]: 
                   A         B         C         D
2013-01-05 -1.744805 -0.966685  0.935808  0.615988
2013-01-06  0.061212 -0.330839 -0.468423 -0.927937
2013-01-04 -1.157074 -0.158821 -2.012260  1.202826
2013-01-03  1.083691 -0.113957  1.493871  2.664410
2013-01-02  0.992830  0.394886 -0.808420 -0.681974
2013-01-01 -0.126299  1.264629  1.756465 -0.785511

Selection

Note

While standard Python / Numpy expressions for selecting and setting are intuitive and come in handy for interactive work, for production code, we recommend the optimized DataFrame data access methods, .at, .iat, .loc and .iloc.

Getting

Selecting a single column, which yields a Series, equivalent to df.A:

In [23]: df['A'].execute()
Out[23]: 
2013-01-01   -0.126299
2013-01-02    0.992830
2013-01-03    1.083691
2013-01-04   -1.157074
2013-01-05   -1.744805
2013-01-06    0.061212
Freq: D, Name: A, dtype: float64

Selecting via [], which slices the rows.

In [24]: df[0:3].execute()
Out[24]: 
                   A         B         C         D
2013-01-01 -0.126299  1.264629  1.756465 -0.785511
2013-01-02  0.992830  0.394886 -0.808420 -0.681974
2013-01-03  1.083691 -0.113957  1.493871  2.664410

In [25]: df['20130102':'20130104'].execute()
Out[25]: 
                   A         B         C         D
2013-01-02  0.992830  0.394886 -0.808420 -0.681974
2013-01-03  1.083691 -0.113957  1.493871  2.664410
2013-01-04 -1.157074 -0.158821 -2.012260  1.202826

Selection by label

For getting a cross section using a label:

In [26]: df.loc['20130101'].execute()
Out[26]: 
A   -0.126299
B    1.264629
C    1.756465
D   -0.785511
Name: 2013-01-01 00:00:00, dtype: float64

Selecting on a multi-axis by label:

In [27]: df.loc[:, ['A', 'B']].execute()
Out[27]: 
                   A         B
2013-01-01 -0.126299  1.264629
2013-01-02  0.992830  0.394886
2013-01-03  1.083691 -0.113957
2013-01-04 -1.157074 -0.158821
2013-01-05 -1.744805 -0.966685
2013-01-06  0.061212 -0.330839

Showing label slicing, both endpoints are included:

In [28]: df.loc['20130102':'20130104', ['A', 'B']].execute()
Out[28]: 
                   A         B
2013-01-02  0.992830  0.394886
2013-01-03  1.083691 -0.113957
2013-01-04 -1.157074 -0.158821

Reduction in the dimensions of the returned object:

In [29]: df.loc['20130102', ['A', 'B']].execute()
Out[29]: 
A    0.992830
B    0.394886
Name: 2013-01-02 00:00:00, dtype: float64

For getting a scalar value:

In [30]: df.loc['20130101', 'A'].execute()
Out[30]: -0.12629922084962217

For getting fast access to a scalar (equivalent to the prior method):

In [31]: df.at['20130101', 'A'].execute()
Out[31]: -0.12629922084962217

Selection by position

Select via the position of the passed integers:

In [32]: df.iloc[3].execute()
Out[32]: 
A   -1.157074
B   -0.158821
C   -2.012260
D    1.202826
Name: 2013-01-04 00:00:00, dtype: float64

By integer slices, acting similar to numpy/python:

In [33]: df.iloc[3:5, 0:2].execute()
Out[33]: 
                   A         B
2013-01-04 -1.157074 -0.158821
2013-01-05 -1.744805 -0.966685

By lists of integer position locations, similar to the numpy/python style:

In [34]: df.iloc[[1, 2, 4], [0, 2]].execute()
Out[34]: 
                   A         C
2013-01-02  0.992830 -0.808420
2013-01-03  1.083691  1.493871
2013-01-05 -1.744805  0.935808

For slicing rows explicitly:

In [35]: df.iloc[1:3, :].execute()
Out[35]: 
                   A         B         C         D
2013-01-02  0.992830  0.394886 -0.808420 -0.681974
2013-01-03  1.083691 -0.113957  1.493871  2.664410

For slicing columns explicitly:

In [36]: df.iloc[:, 1:3].execute()
Out[36]: 
                   B         C
2013-01-01  1.264629  1.756465
2013-01-02  0.394886 -0.808420
2013-01-03 -0.113957  1.493871
2013-01-04 -0.158821 -2.012260
2013-01-05 -0.966685  0.935808
2013-01-06 -0.330839 -0.468423

For getting a value explicitly:

In [37]: df.iloc[1, 1].execute()
Out[37]: 0.39488617338325527

For getting fast access to a scalar (equivalent to the prior method):

In [38]: df.iat[1, 1].execute()
Out[38]: 0.39488617338325527

Boolean indexing

Using a single column’s values to select data.

In [39]: df[df['A'] > 0].execute()
Out[39]: 
                   A         B         C         D
2013-01-02  0.992830  0.394886 -0.808420 -0.681974
2013-01-03  1.083691 -0.113957  1.493871  2.664410
2013-01-06  0.061212 -0.330839 -0.468423 -0.927937

Selecting values from a DataFrame where a boolean condition is met.

In [40]: df[df > 0].execute()
Out[40]: 
                   A         B         C         D
2013-01-01       NaN  1.264629  1.756465       NaN
2013-01-02  0.992830  0.394886       NaN       NaN
2013-01-03  1.083691       NaN  1.493871  2.664410
2013-01-04       NaN       NaN       NaN  1.202826
2013-01-05       NaN       NaN  0.935808  0.615988
2013-01-06  0.061212       NaN       NaN       NaN

Operations

Stats

Operations in general exclude missing data.

Performing a descriptive statistic:

In [41]: df.mean().execute()
Out[41]: 
A   -0.148407
B    0.014869
C    0.149507
D    0.347967
dtype: float64

Same operation on the other axis:

In [42]: df.mean(1).execute()
Out[42]: 
2013-01-01    0.527321
2013-01-02   -0.025670
2013-01-03    1.282004
2013-01-04   -0.531332
2013-01-05   -0.289923
2013-01-06   -0.416497
Freq: D, dtype: float64

Operating with objects that have different dimensionality and need alignment. In addition, Mars DataFrame automatically broadcasts along the specified dimension.

In [43]: s = md.Series([1, 3, 5, mt.nan, 6, 8], index=dates).shift(2)

In [44]: s.execute()
Out[44]: 
2013-01-01    NaN
2013-01-02    NaN
2013-01-03    1.0
2013-01-04    3.0
2013-01-05    5.0
2013-01-06    NaN
Freq: D, dtype: float64

In [45]: df.sub(s, axis='index').execute()
Out[45]: 
                   A         B         C         D
2013-01-01       NaN       NaN       NaN       NaN
2013-01-02       NaN       NaN       NaN       NaN
2013-01-03  0.083691 -1.113957  0.493871  1.664410
2013-01-04 -4.157074 -3.158821 -5.012260 -1.797174
2013-01-05 -6.744805 -5.966685 -4.064192 -4.384012
2013-01-06       NaN       NaN       NaN       NaN

Apply

Applying functions to the data:

In [46]: df.apply(lambda x: x.max() - x.min()).execute()
Out[46]: 
A    2.828496
B    2.231314
C    3.768725
D    3.592347
dtype: float64

String Methods

Series is equipped with a set of string processing methods in the str attribute that make it easy to operate on each element of the array, as in the code snippet below. Note that pattern-matching in str generally uses regular expressions by default (and in some cases always uses them). See more at Vectorized String Methods.

In [47]: s = md.Series(['A', 'B', 'C', 'Aaba', 'Baca', mt.nan, 'CABA', 'dog', 'cat'])

In [48]: s.str.lower().execute()
Out[48]: 
0       a
1       b
2       c
3    aaba
4    baca
5     NaN
6    caba
7     dog
8     cat
dtype: object

Merge

Concat

Mars DataFrame provides various facilities for easily combining together Series and DataFrame objects with various kinds of set logic for the indexes and relational algebra functionality in the case of join / merge-type operations.

Concatenating DataFrame objects together with concat():

In [49]: df = md.DataFrame(mt.random.randn(10, 4))

In [50]: df.execute()
Out[50]: 
          0         1         2         3
0 -0.144211  1.375899  0.118131  0.677074
1  1.051823  1.774792 -0.442876  0.407749
2 -1.470332 -0.744221  1.466971 -1.049013
3 -0.844817 -1.051110 -0.363198  0.064381
4  1.675680 -0.822511 -0.554110  1.400377
5  1.169133 -0.980388 -0.413070  0.541066
6 -0.536081 -1.555884  0.479434  1.405025
7  1.477188  0.869055  1.317190  0.347329
8  0.527675  0.846943  0.697329 -0.912064
9  0.571821  0.530881 -1.562489 -0.789484

# break it into pieces
In [51]: pieces = [df[:3], df[3:7], df[7:]]

In [52]: md.concat(pieces).execute()
Out[52]: 
          0         1         2         3
0 -0.144211  1.375899  0.118131  0.677074
1  1.051823  1.774792 -0.442876  0.407749
2 -1.470332 -0.744221  1.466971 -1.049013
3 -0.844817 -1.051110 -0.363198  0.064381
4  1.675680 -0.822511 -0.554110  1.400377
5  1.169133 -0.980388 -0.413070  0.541066
6 -0.536081 -1.555884  0.479434  1.405025
7  1.477188  0.869055  1.317190  0.347329
8  0.527675  0.846943  0.697329 -0.912064
9  0.571821  0.530881 -1.562489 -0.789484

Note

Adding a column to a DataFrame is relatively fast. However, adding a row requires a copy, and may be expensive. We recommend passing a pre-built list of records to the DataFrame constructor instead of building a DataFrame by iteratively appending records to it.

Join

SQL style merges. See the Database style joining section.

In [53]: left = md.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]})

In [54]: right = md.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]})

In [55]: left.execute()
Out[55]: 
   key  lval
0  foo     1
1  foo     2

In [56]: right.execute()
Out[56]: 
   key  rval
0  foo     4
1  foo     5

In [57]: md.merge(left, right, on='key').execute()
Out[57]: 
   key  lval  rval
0  foo     1     4
1  foo     1     5
2  foo     2     4
3  foo     2     5

Another example that can be given is:

In [58]: left = md.DataFrame({'key': ['foo', 'bar'], 'lval': [1, 2]})

In [59]: right = md.DataFrame({'key': ['foo', 'bar'], 'rval': [4, 5]})

In [60]: left.execute()
Out[60]: 
   key  lval
0  foo     1
1  bar     2

In [61]: right.execute()
Out[61]: 
   key  rval
0  foo     4
1  bar     5

In [62]: md.merge(left, right, on='key').execute()
Out[62]: 
   key  lval  rval
0  foo     1     4
1  bar     2     5

Grouping

By “group by” we are referring to a process involving one or more of the following steps:

  • Splitting the data into groups based on some criteria

  • Applying a function to each group independently

  • Combining the results into a data structure

In [63]: df = md.DataFrame({'A': ['foo', 'bar', 'foo', 'bar',
   ....:                          'foo', 'bar', 'foo', 'foo'],
   ....:                    'B': ['one', 'one', 'two', 'three',
   ....:                          'two', 'two', 'one', 'three'],
   ....:                    'C': mt.random.randn(8),
   ....:                    'D': mt.random.randn(8)})
   ....: 

In [64]: df.execute()
Out[64]: 
     A      B         C         D
0  foo    one -0.055803  0.554869
1  bar    one -0.977742  1.639152
2  foo    two -0.029450 -1.240661
3  bar  three -0.204480  0.039422
4  foo    two  0.583841  0.410967
5  bar    two  0.916304 -1.318867
6  foo    one -1.289167  0.158902
7  foo  three  0.148402 -1.637670

Grouping and then applying the sum() function to the resulting groups.

In [65]: df.groupby('A').sum().execute()
Out[65]: 
            C         D
A                      
bar -0.265917  0.359708
foo -0.642178 -1.753593

Grouping by multiple columns forms a hierarchical index, and again we can apply the sum function.

In [66]: df.groupby(['A', 'B']).sum().execute()
Out[66]: 
                  C         D
A   B                        
bar one   -0.977742  1.639152
    three -0.204480  0.039422
    two    0.916304 -1.318867
foo one   -1.344970  0.713771
    three  0.148402 -1.637670
    two    0.554391 -0.829695

Plotting

We use the standard convention for referencing the matplotlib API:

In [67]: import matplotlib.pyplot as plt

In [68]: plt.close('all')
In [69]: ts = md.Series(mt.random.randn(1000),
   ....:                index=md.date_range('1/1/2000', periods=1000))
   ....: 

In [70]: ts = ts.cumsum()

In [71]: ts.plot()
Out[71]: <AxesSubplot:>
../../_images/series_plot_basic.png

On a DataFrame, the plot() method is a convenience to plot all of the columns with labels:

In [72]: df = md.DataFrame(mt.random.randn(1000, 4), index=ts.index,
   ....:                   columns=['A', 'B', 'C', 'D'])
   ....: 

In [73]: df = df.cumsum()

In [74]: plt.figure()
Out[74]: <Figure size 640x480 with 0 Axes>

In [75]: df.plot()
Out[75]: <AxesSubplot:>

In [76]: plt.legend(loc='best')
Out[76]: <matplotlib.legend.Legend at 0x7efb78dcf490>
../../_images/frame_plot_basic.png

Getting data in/out

CSV

In [77]: df.to_csv('foo.csv').execute()
Out[77]: 
Empty DataFrame
Columns: []
Index: []

Reading from a csv file.

In [78]: md.read_csv('foo.csv').execute()
Out[78]: 
     Unnamed: 0          A          B          C          D
0    2000-01-01   0.016940  -1.604006   1.668928  -0.060186
1    2000-01-02   0.692989  -1.548461   1.255053  -0.416344
2    2000-01-03  -0.203780   0.019469  -0.357596   1.403616
3    2000-01-04  -0.035630   0.387176  -0.738632   2.335048
4    2000-01-05  -0.448735  -0.333134  -0.416332   1.687239
..          ...        ...        ...        ...        ...
995  2002-09-22  46.814795  16.743822  19.311003 -39.727366
996  2002-09-23  48.072650  16.531558  20.390472 -41.265423
997  2002-09-24  48.297926  16.877596  19.535501 -42.447506
998  2002-09-25  48.222697  16.829244  19.045099 -43.906503
999  2002-09-26  49.978712  15.924863  17.985864 -44.242937

[1000 rows x 5 columns]