10 minutes to Mars DataFrame

This is a short introduction to Mars DataFrame which is originated from 10 minutes to pandas.

Customarily, we import as follows:

In [1]: import mars

In [2]: import mars.tensor as mt

In [3]: import mars.dataframe as md

Now create a new default session.

In [4]: mars.new_session()
Out[4]: <mars.deploy.oscar.session.SyncSession at 0x7f27fed05710>

Object creation

Creating a Series by passing a list of values, letting it create a default integer index:

In [5]: s = md.Series([1, 3, 5, mt.nan, 6, 8])

In [6]: s.execute()
Out[6]: 
0    1.0
1    3.0
2    5.0
3    NaN
4    6.0
5    8.0
dtype: float64

Creating a DataFrame by passing a Mars tensor, with a datetime index and labeled columns:

In [7]: dates = md.date_range('20130101', periods=6)

In [8]: dates.execute()
Out[8]: 
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
               '2013-01-05', '2013-01-06'],
              dtype='datetime64[ns]', freq='D')

In [9]: df = md.DataFrame(mt.random.randn(6, 4), index=dates, columns=list('ABCD'))

In [10]: df.execute()
Out[10]: 
                   A         B         C         D
2013-01-01  0.031858 -1.288816  0.854701 -1.335960
2013-01-02 -0.401715 -0.615244  0.552401 -0.430028
2013-01-03 -0.870396  1.550893 -2.725728  0.959227
2013-01-04  1.028434  0.339197  0.380672  0.636182
2013-01-05  1.158726 -1.267667 -2.122808  0.455100
2013-01-06 -0.407456  1.736010  0.180603  0.781140

Creating a DataFrame by passing a dict of objects that can be converted to series-like.

In [11]: df2 = md.DataFrame({'A': 1.,
   ....:                     'B': md.Timestamp('20130102'),
   ....:                     'C': md.Series(1, index=list(range(4)), dtype='float32'),
   ....:                     'D': mt.array([3] * 4, dtype='int32'),
   ....:                     'E': 'foo'})
   ....: 

In [12]: df2.execute()
Out[12]: 
     A          B    C  D    E
0  1.0 2013-01-02  1.0  3  foo
1  1.0 2013-01-02  1.0  3  foo
2  1.0 2013-01-02  1.0  3  foo
3  1.0 2013-01-02  1.0  3  foo

The columns of the resulting DataFrame have different dtypes.

In [13]: df2.dtypes
Out[13]: 
A           float64
B    datetime64[ns]
C           float32
D             int32
E            object
dtype: object

Viewing data

Here is how to view the top and bottom rows of the frame:

In [14]: df.head().execute()
Out[14]: 
                   A         B         C         D
2013-01-01  0.031858 -1.288816  0.854701 -1.335960
2013-01-02 -0.401715 -0.615244  0.552401 -0.430028
2013-01-03 -0.870396  1.550893 -2.725728  0.959227
2013-01-04  1.028434  0.339197  0.380672  0.636182
2013-01-05  1.158726 -1.267667 -2.122808  0.455100

In [15]: df.tail(3).execute()
Out[15]: 
                   A         B         C         D
2013-01-04  1.028434  0.339197  0.380672  0.636182
2013-01-05  1.158726 -1.267667 -2.122808  0.455100
2013-01-06 -0.407456  1.736010  0.180603  0.781140

Display the index, columns:

In [16]: df.index.execute()
Out[16]: 
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
               '2013-01-05', '2013-01-06'],
              dtype='datetime64[ns]', freq='D')

In [17]: df.columns.execute()
Out[17]: Index(['A', 'B', 'C', 'D'], dtype='object')

DataFrame.to_tensor() gives a Mars tensor representation of the underlying data. Note that this can be an expensive operation when your DataFrame has columns with different data types, which comes down to a fundamental difference between DataFrame and tensor: tensors have one dtype for the entire tensor, while DataFrames have one dtype per column. When you call DataFrame.to_tensor(), Mars DataFrame will find the tensor dtype that can hold all of the dtypes in the DataFrame. This may end up being object, which requires casting every value to a Python object.

For df, our DataFrame of all floating-point values, DataFrame.to_tensor() is fast and doesn’t require copying data.

In [18]: df.to_tensor().execute()
Out[18]: 
array([[ 0.03185849, -1.28881595,  0.8547013 , -1.33596011],
       [-0.40171494, -0.61524382,  0.55240138, -0.43002834],
       [-0.87039601,  1.55089252, -2.72572773,  0.95922729],
       [ 1.02843429,  0.33919688,  0.3806717 ,  0.63618186],
       [ 1.15872567, -1.26766728, -2.12280763,  0.45509978],
       [-0.40745647,  1.73601006,  0.18060267,  0.78113959]])

For df2, the DataFrame with multiple dtypes, DataFrame.to_tensor() is relatively expensive.

In [19]: df2.to_tensor().execute()
Out[19]: 
array([[1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo'],
       [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo'],
       [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo'],
       [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo']],
      dtype=object)

Note

DataFrame.to_tensor() does not include the index or column labels in the output.

describe() shows a quick statistic summary of your data:

In [20]: df.describe().execute()
Out[20]: 
              A         B         C         D
count  6.000000  6.000000  6.000000  6.000000
mean   0.089909  0.075729 -0.480026  0.177610
std    0.829195  1.352494  1.534050  0.885729
min   -0.870396 -1.288816 -2.725728 -1.335960
25%   -0.406021 -1.104561 -1.546955 -0.208746
50%   -0.184928 -0.138023  0.280637  0.545641
75%    0.779290  1.247969  0.509469  0.744900
max    1.158726  1.736010  0.854701  0.959227

Sorting by an axis:

In [21]: df.sort_index(axis=1, ascending=False).execute()
Out[21]: 
                   D         C         B         A
2013-01-01 -1.335960  0.854701 -1.288816  0.031858
2013-01-02 -0.430028  0.552401 -0.615244 -0.401715
2013-01-03  0.959227 -2.725728  1.550893 -0.870396
2013-01-04  0.636182  0.380672  0.339197  1.028434
2013-01-05  0.455100 -2.122808 -1.267667  1.158726
2013-01-06  0.781140  0.180603  1.736010 -0.407456

Sorting by values:

In [22]: df.sort_values(by='B').execute()
Out[22]: 
                   A         B         C         D
2013-01-01  0.031858 -1.288816  0.854701 -1.335960
2013-01-05  1.158726 -1.267667 -2.122808  0.455100
2013-01-02 -0.401715 -0.615244  0.552401 -0.430028
2013-01-04  1.028434  0.339197  0.380672  0.636182
2013-01-03 -0.870396  1.550893 -2.725728  0.959227
2013-01-06 -0.407456  1.736010  0.180603  0.781140

Selection

Note

While standard Python / Numpy expressions for selecting and setting are intuitive and come in handy for interactive work, for production code, we recommend the optimized DataFrame data access methods, .at, .iat, .loc and .iloc.

Getting

Selecting a single column, which yields a Series, equivalent to df.A:

In [23]: df['A'].execute()
Out[23]: 
2013-01-01    0.031858
2013-01-02   -0.401715
2013-01-03   -0.870396
2013-01-04    1.028434
2013-01-05    1.158726
2013-01-06   -0.407456
Freq: D, Name: A, dtype: float64

Selecting via [], which slices the rows.

In [24]: df[0:3].execute()
Out[24]: 
                   A         B         C         D
2013-01-01  0.031858 -1.288816  0.854701 -1.335960
2013-01-02 -0.401715 -0.615244  0.552401 -0.430028
2013-01-03 -0.870396  1.550893 -2.725728  0.959227

In [25]: df['20130102':'20130104'].execute()
Out[25]: 
                   A         B         C         D
2013-01-02 -0.401715 -0.615244  0.552401 -0.430028
2013-01-03 -0.870396  1.550893 -2.725728  0.959227
2013-01-04  1.028434  0.339197  0.380672  0.636182

Selection by label

For getting a cross section using a label:

In [26]: df.loc['20130101'].execute()
Out[26]: 
A    0.031858
B   -1.288816
C    0.854701
D   -1.335960
Name: 2013-01-01 00:00:00, dtype: float64

Selecting on a multi-axis by label:

In [27]: df.loc[:, ['A', 'B']].execute()
Out[27]: 
                   A         B
2013-01-01  0.031858 -1.288816
2013-01-02 -0.401715 -0.615244
2013-01-03 -0.870396  1.550893
2013-01-04  1.028434  0.339197
2013-01-05  1.158726 -1.267667
2013-01-06 -0.407456  1.736010

Showing label slicing, both endpoints are included:

In [28]: df.loc['20130102':'20130104', ['A', 'B']].execute()
Out[28]: 
                   A         B
2013-01-02 -0.401715 -0.615244
2013-01-03 -0.870396  1.550893
2013-01-04  1.028434  0.339197

Reduction in the dimensions of the returned object:

In [29]: df.loc['20130102', ['A', 'B']].execute()
Out[29]: 
A   -0.401715
B   -0.615244
Name: 2013-01-02 00:00:00, dtype: float64

For getting a scalar value:

In [30]: df.loc['20130101', 'A'].execute()
Out[30]: 0.03185848999371285

For getting fast access to a scalar (equivalent to the prior method):

In [31]: df.at['20130101', 'A'].execute()
Out[31]: 0.03185848999371285

Selection by position

Select via the position of the passed integers:

In [32]: df.iloc[3].execute()
Out[32]: 
A    1.028434
B    0.339197
C    0.380672
D    0.636182
Name: 2013-01-04 00:00:00, dtype: float64

By integer slices, acting similar to numpy/python:

In [33]: df.iloc[3:5, 0:2].execute()
Out[33]: 
                   A         B
2013-01-04  1.028434  0.339197
2013-01-05  1.158726 -1.267667

By lists of integer position locations, similar to the numpy/python style:

In [34]: df.iloc[[1, 2, 4], [0, 2]].execute()
Out[34]: 
                   A         C
2013-01-02 -0.401715  0.552401
2013-01-03 -0.870396 -2.725728
2013-01-05  1.158726 -2.122808

For slicing rows explicitly:

In [35]: df.iloc[1:3, :].execute()
Out[35]: 
                   A         B         C         D
2013-01-02 -0.401715 -0.615244  0.552401 -0.430028
2013-01-03 -0.870396  1.550893 -2.725728  0.959227

For slicing columns explicitly:

In [36]: df.iloc[:, 1:3].execute()
Out[36]: 
                   B         C
2013-01-01 -1.288816  0.854701
2013-01-02 -0.615244  0.552401
2013-01-03  1.550893 -2.725728
2013-01-04  0.339197  0.380672
2013-01-05 -1.267667 -2.122808
2013-01-06  1.736010  0.180603

For getting a value explicitly:

In [37]: df.iloc[1, 1].execute()
Out[37]: -0.6152438221607031

For getting fast access to a scalar (equivalent to the prior method):

In [38]: df.iat[1, 1].execute()
Out[38]: -0.6152438221607031

Boolean indexing

Using a single column’s values to select data.

In [39]: df[df['A'] > 0].execute()
Out[39]: 
                   A         B         C         D
2013-01-01  0.031858 -1.288816  0.854701 -1.335960
2013-01-04  1.028434  0.339197  0.380672  0.636182
2013-01-05  1.158726 -1.267667 -2.122808  0.455100

Selecting values from a DataFrame where a boolean condition is met.

In [40]: df[df > 0].execute()
Out[40]: 
                   A         B         C         D
2013-01-01  0.031858       NaN  0.854701       NaN
2013-01-02       NaN       NaN  0.552401       NaN
2013-01-03       NaN  1.550893       NaN  0.959227
2013-01-04  1.028434  0.339197  0.380672  0.636182
2013-01-05  1.158726       NaN       NaN  0.455100
2013-01-06       NaN  1.736010  0.180603  0.781140

Operations

Stats

Operations in general exclude missing data.

Performing a descriptive statistic:

In [41]: df.mean().execute()
Out[41]: 
A    0.089909
B    0.075729
C   -0.480026
D    0.177610
dtype: float64

Same operation on the other axis:

In [42]: df.mean(1).execute()
Out[42]: 
2013-01-01   -0.434554
2013-01-02   -0.223646
2013-01-03   -0.271501
2013-01-04    0.596121
2013-01-05   -0.444162
2013-01-06    0.572574
Freq: D, dtype: float64

Operating with objects that have different dimensionality and need alignment. In addition, Mars DataFrame automatically broadcasts along the specified dimension.

In [43]: s = md.Series([1, 3, 5, mt.nan, 6, 8], index=dates).shift(2)

In [44]: s.execute()
Out[44]: 
2013-01-01    NaN
2013-01-02    NaN
2013-01-03    1.0
2013-01-04    3.0
2013-01-05    5.0
2013-01-06    NaN
Freq: D, dtype: float64

In [45]: df.sub(s, axis='index').execute()
Out[45]: 
                   A         B         C         D
2013-01-01       NaN       NaN       NaN       NaN
2013-01-02       NaN       NaN       NaN       NaN
2013-01-03 -1.870396  0.550893 -3.725728 -0.040773
2013-01-04 -1.971566 -2.660803 -2.619328 -2.363818
2013-01-05 -3.841274 -6.267667 -7.122808 -4.544900
2013-01-06       NaN       NaN       NaN       NaN

Apply

Applying functions to the data:

In [46]: df.apply(lambda x: x.max() - x.min()).execute()
Out[46]: 
A    2.029122
B    3.024826
C    3.580429
D    2.295187
dtype: float64

String Methods

Series is equipped with a set of string processing methods in the str attribute that make it easy to operate on each element of the array, as in the code snippet below. Note that pattern-matching in str generally uses regular expressions by default (and in some cases always uses them). See more at Vectorized String Methods.

In [47]: s = md.Series(['A', 'B', 'C', 'Aaba', 'Baca', mt.nan, 'CABA', 'dog', 'cat'])

In [48]: s.str.lower().execute()
Out[48]: 
0       a
1       b
2       c
3    aaba
4    baca
5     NaN
6    caba
7     dog
8     cat
dtype: object

Merge

Concat

Mars DataFrame provides various facilities for easily combining together Series and DataFrame objects with various kinds of set logic for the indexes and relational algebra functionality in the case of join / merge-type operations.

Concatenating DataFrame objects together with concat():

In [49]: df = md.DataFrame(mt.random.randn(10, 4))

In [50]: df.execute()
Out[50]: 
          0         1         2         3
0  1.120997 -0.118479 -2.355211  1.193455
1  1.075513 -1.389744  0.807168  0.309333
2 -0.069988 -0.064682 -2.005724 -1.207657
3  0.176942 -0.342839 -1.646610 -1.955171
4 -0.399223 -0.768995 -1.685051  1.133064
5  0.214478  0.695396  0.475005  0.825655
6  0.099625  1.812049  0.227001 -0.648604
7  0.846410 -0.466933  2.242083 -0.505739
8 -0.768976 -0.376062 -0.525003 -0.954622
9 -1.185568  0.773119 -0.671390  1.293160

# break it into pieces
In [51]: pieces = [df[:3], df[3:7], df[7:]]

In [52]: md.concat(pieces).execute()
Out[52]: 
          0         1         2         3
0  1.120997 -0.118479 -2.355211  1.193455
1  1.075513 -1.389744  0.807168  0.309333
2 -0.069988 -0.064682 -2.005724 -1.207657
3  0.176942 -0.342839 -1.646610 -1.955171
4 -0.399223 -0.768995 -1.685051  1.133064
5  0.214478  0.695396  0.475005  0.825655
6  0.099625  1.812049  0.227001 -0.648604
7  0.846410 -0.466933  2.242083 -0.505739
8 -0.768976 -0.376062 -0.525003 -0.954622
9 -1.185568  0.773119 -0.671390  1.293160

Note

Adding a column to a DataFrame is relatively fast. However, adding a row requires a copy, and may be expensive. We recommend passing a pre-built list of records to the DataFrame constructor instead of building a DataFrame by iteratively appending records to it.

Join

SQL style merges. See the Database style joining section.

In [53]: left = md.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]})

In [54]: right = md.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]})

In [55]: left.execute()
Out[55]: 
   key  lval
0  foo     1
1  foo     2

In [56]: right.execute()
Out[56]: 
   key  rval
0  foo     4
1  foo     5

In [57]: md.merge(left, right, on='key').execute()
Out[57]: 
   key  lval  rval
0  foo     1     4
1  foo     1     5
2  foo     2     4
3  foo     2     5

Another example that can be given is:

In [58]: left = md.DataFrame({'key': ['foo', 'bar'], 'lval': [1, 2]})

In [59]: right = md.DataFrame({'key': ['foo', 'bar'], 'rval': [4, 5]})

In [60]: left.execute()
Out[60]: 
   key  lval
0  foo     1
1  bar     2

In [61]: right.execute()
Out[61]: 
   key  rval
0  foo     4
1  bar     5

In [62]: md.merge(left, right, on='key').execute()
Out[62]: 
   key  lval  rval
0  foo     1     4
1  bar     2     5

Grouping

By “group by” we are referring to a process involving one or more of the following steps:

  • Splitting the data into groups based on some criteria

  • Applying a function to each group independently

  • Combining the results into a data structure

In [63]: df = md.DataFrame({'A': ['foo', 'bar', 'foo', 'bar',
   ....:                          'foo', 'bar', 'foo', 'foo'],
   ....:                    'B': ['one', 'one', 'two', 'three',
   ....:                          'two', 'two', 'one', 'three'],
   ....:                    'C': mt.random.randn(8),
   ....:                    'D': mt.random.randn(8)})
   ....: 

In [64]: df.execute()
Out[64]: 
     A      B         C         D
0  foo    one  1.066889 -0.099254
1  bar    one  0.184610 -0.078819
2  foo    two  0.451670 -0.018452
3  bar  three -0.040137 -2.248390
4  foo    two -0.487763  0.106860
5  bar    two  0.246008  0.232604
6  foo    one  0.145694  0.832487
7  foo  three -0.121356  0.347842

Grouping and then applying the sum() function to the resulting groups.

In [65]: df.groupby('A').sum().execute()
Out[65]: 
            C         D
A                      
bar  0.390481 -2.094605
foo  1.055134  1.169484

Grouping by multiple columns forms a hierarchical index, and again we can apply the sum function.

In [66]: df.groupby(['A', 'B']).sum().execute()
Out[66]: 
                  C         D
A   B                        
bar one    0.184610 -0.078819
    three -0.040137 -2.248390
    two    0.246008  0.232604
foo one    1.212583  0.733233
    three -0.121356  0.347842
    two   -0.036093  0.088409

Plotting

We use the standard convention for referencing the matplotlib API:

In [67]: import matplotlib.pyplot as plt

In [68]: plt.close('all')
In [69]: ts = md.Series(mt.random.randn(1000),
   ....:                index=md.date_range('1/1/2000', periods=1000))
   ....: 

In [70]: ts = ts.cumsum()

In [71]: ts.plot()
Out[71]: <AxesSubplot:>
../../_images/series_plot_basic.png

On a DataFrame, the plot() method is a convenience to plot all of the columns with labels:

In [72]: df = md.DataFrame(mt.random.randn(1000, 4), index=ts.index,
   ....:                   columns=['A', 'B', 'C', 'D'])
   ....: 

In [73]: df = df.cumsum()

In [74]: plt.figure()
Out[74]: <Figure size 640x480 with 0 Axes>

In [75]: df.plot()
Out[75]: <AxesSubplot:>

In [76]: plt.legend(loc='best')
Out[76]: <matplotlib.legend.Legend at 0x7f27fcf89e50>
../../_images/frame_plot_basic.png

Getting data in/out

CSV

In [77]: df.to_csv('foo.csv').execute()
Out[77]: 
Empty DataFrame
Columns: []
Index: []

Reading from a csv file.

In [78]: md.read_csv('foo.csv').execute()
Out[78]: 
     Unnamed: 0          A          B          C          D
0    2000-01-01  -1.178932  -0.387909   0.459451  -1.251097
1    2000-01-02  -1.861876  -0.713948   0.250925  -1.827832
2    2000-01-03  -2.778307   1.833456   1.612688  -0.942235
3    2000-01-04  -2.793780   1.291922   2.792795  -0.529351
4    2000-01-05  -2.481649   1.035656   2.795307  -0.520718
..          ...        ...        ...        ...        ...
995  2002-09-22  65.407966 -24.970449  13.954419   9.800957
996  2002-09-23  66.440976 -25.887778  15.257127   9.720813
997  2002-09-24  66.540299 -26.187824  14.320245  10.335813
998  2002-09-25  66.990436 -25.371995  14.733360  10.660733
999  2002-09-26  67.748928 -23.776976  14.499819  11.212591

[1000 rows x 5 columns]