10 minutes to Mars DataFrame

This is a short introduction to Mars DataFrame which is originated from 10 minutes to pandas.

Customarily, we import as follows:

In [1]: import mars

In [2]: import mars.tensor as mt

In [3]: import mars.dataframe as md

Now create a new default session.

In [4]: mars.new_session()
Out[4]: <mars.deploy.oscar.session.SyncSession at 0x7f4b321440d0>

Object creation

Creating a Series by passing a list of values, letting it create a default integer index:

In [5]: s = md.Series([1, 3, 5, mt.nan, 6, 8])

In [6]: s.execute()
Out[6]: 
0    1.0
1    3.0
2    5.0
3    NaN
4    6.0
5    8.0
dtype: float64

Creating a DataFrame by passing a Mars tensor, with a datetime index and labeled columns:

In [7]: dates = md.date_range('20130101', periods=6)

In [8]: dates.execute()
Out[8]: 
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
               '2013-01-05', '2013-01-06'],
              dtype='datetime64[ns]', freq='D')

In [9]: df = md.DataFrame(mt.random.randn(6, 4), index=dates, columns=list('ABCD'))

In [10]: df.execute()
Out[10]: 
                   A         B         C         D
2013-01-01  0.308116  0.068169  0.021408 -0.424766
2013-01-02  0.780138 -1.092194 -0.438759 -0.647873
2013-01-03  0.144402  0.626780  1.414595 -0.410170
2013-01-04  0.363341  0.507513 -1.109360  1.217660
2013-01-05  1.135997  0.467638  0.421051  0.250454
2013-01-06 -1.979694 -0.676802 -1.278337  0.544590

Creating a DataFrame by passing a dict of objects that can be converted to series-like.

In [11]: df2 = md.DataFrame({'A': 1.,
   ....:                     'B': md.Timestamp('20130102'),
   ....:                     'C': md.Series(1, index=list(range(4)), dtype='float32'),
   ....:                     'D': mt.array([3] * 4, dtype='int32'),
   ....:                     'E': 'foo'})
   ....: 

In [12]: df2.execute()
Out[12]: 
     A          B    C  D    E
0  1.0 2013-01-02  1.0  3  foo
1  1.0 2013-01-02  1.0  3  foo
2  1.0 2013-01-02  1.0  3  foo
3  1.0 2013-01-02  1.0  3  foo

The columns of the resulting DataFrame have different dtypes.

In [13]: df2.dtypes
Out[13]: 
A           float64
B    datetime64[ns]
C           float32
D             int32
E            object
dtype: object

Viewing data

Here is how to view the top and bottom rows of the frame:

In [14]: df.head().execute()
Out[14]: 
                   A         B         C         D
2013-01-01  0.308116  0.068169  0.021408 -0.424766
2013-01-02  0.780138 -1.092194 -0.438759 -0.647873
2013-01-03  0.144402  0.626780  1.414595 -0.410170
2013-01-04  0.363341  0.507513 -1.109360  1.217660
2013-01-05  1.135997  0.467638  0.421051  0.250454

In [15]: df.tail(3).execute()
Out[15]: 
                   A         B         C         D
2013-01-04  0.363341  0.507513 -1.109360  1.217660
2013-01-05  1.135997  0.467638  0.421051  0.250454
2013-01-06 -1.979694 -0.676802 -1.278337  0.544590

Display the index, columns:

In [16]: df.index.execute()
Out[16]: 
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
               '2013-01-05', '2013-01-06'],
              dtype='datetime64[ns]', freq='D')

In [17]: df.columns.execute()
Out[17]: Index(['A', 'B', 'C', 'D'], dtype='object')

DataFrame.to_tensor() gives a Mars tensor representation of the underlying data. Note that this can be an expensive operation when your DataFrame has columns with different data types, which comes down to a fundamental difference between DataFrame and tensor: tensors have one dtype for the entire tensor, while DataFrames have one dtype per column. When you call DataFrame.to_tensor(), Mars DataFrame will find the tensor dtype that can hold all of the dtypes in the DataFrame. This may end up being object, which requires casting every value to a Python object.

For df, our DataFrame of all floating-point values, DataFrame.to_tensor() is fast and doesn’t require copying data.

In [18]: df.to_tensor().execute()
Out[18]: 
array([[ 0.30811565,  0.0681689 ,  0.02140802, -0.42476583],
       [ 0.78013817, -1.09219365, -0.43875932, -0.64787293],
       [ 0.14440198,  0.62677977,  1.41459487, -0.41017037],
       [ 0.36334113,  0.50751325, -1.10936047,  1.21766045],
       [ 1.13599729,  0.46763783,  0.42105137,  0.2504538 ],
       [-1.97969363, -0.6768018 , -1.27833727,  0.54459007]])

For df2, the DataFrame with multiple dtypes, DataFrame.to_tensor() is relatively expensive.

In [19]: df2.to_tensor().execute()
Out[19]: 
array([[1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo'],
       [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo'],
       [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo'],
       [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo']],
      dtype=object)

Note

DataFrame.to_tensor() does not include the index or column labels in the output.

describe() shows a quick statistic summary of your data:

In [20]: df.describe().execute()
Out[20]: 
              A         B         C         D
count  6.000000  6.000000  6.000000  6.000000
mean   0.125383 -0.016483 -0.161567  0.088316
std    1.092865  0.710362  1.007922  0.716046
min   -1.979694 -1.092194 -1.278337 -0.647873
25%    0.185330 -0.490559 -0.941710 -0.421117
50%    0.335728  0.267903 -0.208676 -0.079858
75%    0.675939  0.497544  0.321141  0.471056
max    1.135997  0.626780  1.414595  1.217660

Sorting by an axis:

In [21]: df.sort_index(axis=1, ascending=False).execute()
Out[21]: 
                   D         C         B         A
2013-01-01 -0.424766  0.021408  0.068169  0.308116
2013-01-02 -0.647873 -0.438759 -1.092194  0.780138
2013-01-03 -0.410170  1.414595  0.626780  0.144402
2013-01-04  1.217660 -1.109360  0.507513  0.363341
2013-01-05  0.250454  0.421051  0.467638  1.135997
2013-01-06  0.544590 -1.278337 -0.676802 -1.979694

Sorting by values:

In [22]: df.sort_values(by='B').execute()
Out[22]: 
                   A         B         C         D
2013-01-02  0.780138 -1.092194 -0.438759 -0.647873
2013-01-06 -1.979694 -0.676802 -1.278337  0.544590
2013-01-01  0.308116  0.068169  0.021408 -0.424766
2013-01-05  1.135997  0.467638  0.421051  0.250454
2013-01-04  0.363341  0.507513 -1.109360  1.217660
2013-01-03  0.144402  0.626780  1.414595 -0.410170

Selection

Note

While standard Python / Numpy expressions for selecting and setting are intuitive and come in handy for interactive work, for production code, we recommend the optimized DataFrame data access methods, .at, .iat, .loc and .iloc.

Getting

Selecting a single column, which yields a Series, equivalent to df.A:

In [23]: df['A'].execute()
Out[23]: 
2013-01-01    0.308116
2013-01-02    0.780138
2013-01-03    0.144402
2013-01-04    0.363341
2013-01-05    1.135997
2013-01-06   -1.979694
Freq: D, Name: A, dtype: float64

Selecting via [], which slices the rows.

In [24]: df[0:3].execute()
Out[24]: 
                   A         B         C         D
2013-01-01  0.308116  0.068169  0.021408 -0.424766
2013-01-02  0.780138 -1.092194 -0.438759 -0.647873
2013-01-03  0.144402  0.626780  1.414595 -0.410170

In [25]: df['20130102':'20130104'].execute()
Out[25]: 
                   A         B         C         D
2013-01-02  0.780138 -1.092194 -0.438759 -0.647873
2013-01-03  0.144402  0.626780  1.414595 -0.410170
2013-01-04  0.363341  0.507513 -1.109360  1.217660

Selection by label

For getting a cross section using a label:

In [26]: df.loc['20130101'].execute()
Out[26]: 
A    0.308116
B    0.068169
C    0.021408
D   -0.424766
Name: 2013-01-01 00:00:00, dtype: float64

Selecting on a multi-axis by label:

In [27]: df.loc[:, ['A', 'B']].execute()
Out[27]: 
                   A         B
2013-01-01  0.308116  0.068169
2013-01-02  0.780138 -1.092194
2013-01-03  0.144402  0.626780
2013-01-04  0.363341  0.507513
2013-01-05  1.135997  0.467638
2013-01-06 -1.979694 -0.676802

Showing label slicing, both endpoints are included:

In [28]: df.loc['20130102':'20130104', ['A', 'B']].execute()
Out[28]: 
                   A         B
2013-01-02  0.780138 -1.092194
2013-01-03  0.144402  0.626780
2013-01-04  0.363341  0.507513

Reduction in the dimensions of the returned object:

In [29]: df.loc['20130102', ['A', 'B']].execute()
Out[29]: 
A    0.780138
B   -1.092194
Name: 2013-01-02 00:00:00, dtype: float64

For getting a scalar value:

In [30]: df.loc['20130101', 'A'].execute()
Out[30]: 0.30811564606784136

For getting fast access to a scalar (equivalent to the prior method):

In [31]: df.at['20130101', 'A'].execute()
Out[31]: 0.30811564606784136

Selection by position

Select via the position of the passed integers:

In [32]: df.iloc[3].execute()
Out[32]: 
A    0.363341
B    0.507513
C   -1.109360
D    1.217660
Name: 2013-01-04 00:00:00, dtype: float64

By integer slices, acting similar to numpy/python:

In [33]: df.iloc[3:5, 0:2].execute()
Out[33]: 
                   A         B
2013-01-04  0.363341  0.507513
2013-01-05  1.135997  0.467638

By lists of integer position locations, similar to the numpy/python style:

In [34]: df.iloc[[1, 2, 4], [0, 2]].execute()
Out[34]: 
                   A         C
2013-01-02  0.780138 -0.438759
2013-01-03  0.144402  1.414595
2013-01-05  1.135997  0.421051

For slicing rows explicitly:

In [35]: df.iloc[1:3, :].execute()
Out[35]: 
                   A         B         C         D
2013-01-02  0.780138 -1.092194 -0.438759 -0.647873
2013-01-03  0.144402  0.626780  1.414595 -0.410170

For slicing columns explicitly:

In [36]: df.iloc[:, 1:3].execute()
Out[36]: 
                   B         C
2013-01-01  0.068169  0.021408
2013-01-02 -1.092194 -0.438759
2013-01-03  0.626780  1.414595
2013-01-04  0.507513 -1.109360
2013-01-05  0.467638  0.421051
2013-01-06 -0.676802 -1.278337

For getting a value explicitly:

In [37]: df.iloc[1, 1].execute()
Out[37]: -1.0921936515677702

For getting fast access to a scalar (equivalent to the prior method):

In [38]: df.iat[1, 1].execute()
Out[38]: -1.0921936515677702

Boolean indexing

Using a single column’s values to select data.

In [39]: df[df['A'] > 0].execute()
Out[39]: 
                   A         B         C         D
2013-01-01  0.308116  0.068169  0.021408 -0.424766
2013-01-02  0.780138 -1.092194 -0.438759 -0.647873
2013-01-03  0.144402  0.626780  1.414595 -0.410170
2013-01-04  0.363341  0.507513 -1.109360  1.217660
2013-01-05  1.135997  0.467638  0.421051  0.250454

Selecting values from a DataFrame where a boolean condition is met.

In [40]: df[df > 0].execute()
Out[40]: 
                   A         B         C         D
2013-01-01  0.308116  0.068169  0.021408       NaN
2013-01-02  0.780138       NaN       NaN       NaN
2013-01-03  0.144402  0.626780  1.414595       NaN
2013-01-04  0.363341  0.507513       NaN  1.217660
2013-01-05  1.135997  0.467638  0.421051  0.250454
2013-01-06       NaN       NaN       NaN  0.544590

Operations

Stats

Operations in general exclude missing data.

Performing a descriptive statistic:

In [41]: df.mean().execute()
Out[41]: 
A    0.125383
B   -0.016483
C   -0.161567
D    0.088316
dtype: float64

Same operation on the other axis:

In [42]: df.mean(1).execute()
Out[42]: 
2013-01-01   -0.006768
2013-01-02   -0.349672
2013-01-03    0.443902
2013-01-04    0.244789
2013-01-05    0.568785
2013-01-06   -0.847561
Freq: D, dtype: float64

Operating with objects that have different dimensionality and need alignment. In addition, Mars DataFrame automatically broadcasts along the specified dimension.

In [43]: s = md.Series([1, 3, 5, mt.nan, 6, 8], index=dates).shift(2)

In [44]: s.execute()
Out[44]: 
2013-01-01    NaN
2013-01-02    NaN
2013-01-03    1.0
2013-01-04    3.0
2013-01-05    5.0
2013-01-06    NaN
Freq: D, dtype: float64

In [45]: df.sub(s, axis='index').execute()
Out[45]: 
                   A         B         C         D
2013-01-01       NaN       NaN       NaN       NaN
2013-01-02       NaN       NaN       NaN       NaN
2013-01-03 -0.855598 -0.373220  0.414595 -1.410170
2013-01-04 -2.636659 -2.492487 -4.109360 -1.782340
2013-01-05 -3.864003 -4.532362 -4.578949 -4.749546
2013-01-06       NaN       NaN       NaN       NaN

Apply

Applying functions to the data:

In [46]: df.apply(lambda x: x.max() - x.min()).execute()
Out[46]: 
A    3.115691
B    1.718973
C    2.692932
D    1.865533
dtype: float64

String Methods

Series is equipped with a set of string processing methods in the str attribute that make it easy to operate on each element of the array, as in the code snippet below. Note that pattern-matching in str generally uses regular expressions by default (and in some cases always uses them). See more at Vectorized String Methods.

In [47]: s = md.Series(['A', 'B', 'C', 'Aaba', 'Baca', mt.nan, 'CABA', 'dog', 'cat'])

In [48]: s.str.lower().execute()
Out[48]: 
0       a
1       b
2       c
3    aaba
4    baca
5     NaN
6    caba
7     dog
8     cat
dtype: object

Merge

Concat

Mars DataFrame provides various facilities for easily combining together Series and DataFrame objects with various kinds of set logic for the indexes and relational algebra functionality in the case of join / merge-type operations.

Concatenating DataFrame objects together with concat():

In [49]: df = md.DataFrame(mt.random.randn(10, 4))

In [50]: df.execute()
Out[50]: 
          0         1         2         3
0  1.110057  1.009094  0.219718  0.014843
1 -0.282451 -0.008944  1.244634 -0.468203
2 -0.609592 -0.362508 -1.244294 -0.458921
3  1.445054 -1.307466  0.280833 -0.696568
4 -0.809004 -0.169908  0.288524 -1.109452
5  2.215682  0.635755 -0.956003  2.047665
6  1.198108  0.065485 -0.011019  0.867449
7  0.972841  0.742011 -0.865246  1.047195
8  0.920429  1.162683  2.523458 -0.277906
9  1.215033  0.464214 -1.241130  0.280925

# break it into pieces
In [51]: pieces = [df[:3], df[3:7], df[7:]]

In [52]: md.concat(pieces).execute()
Out[52]: 
          0         1         2         3
0  1.110057  1.009094  0.219718  0.014843
1 -0.282451 -0.008944  1.244634 -0.468203
2 -0.609592 -0.362508 -1.244294 -0.458921
3  1.445054 -1.307466  0.280833 -0.696568
4 -0.809004 -0.169908  0.288524 -1.109452
5  2.215682  0.635755 -0.956003  2.047665
6  1.198108  0.065485 -0.011019  0.867449
7  0.972841  0.742011 -0.865246  1.047195
8  0.920429  1.162683  2.523458 -0.277906
9  1.215033  0.464214 -1.241130  0.280925

Note

Adding a column to a DataFrame is relatively fast. However, adding a row requires a copy, and may be expensive. We recommend passing a pre-built list of records to the DataFrame constructor instead of building a DataFrame by iteratively appending records to it.

Join

SQL style merges. See the Database style joining section.

In [53]: left = md.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]})

In [54]: right = md.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]})

In [55]: left.execute()
Out[55]: 
   key  lval
0  foo     1
1  foo     2

In [56]: right.execute()
Out[56]: 
   key  rval
0  foo     4
1  foo     5

In [57]: md.merge(left, right, on='key').execute()
Out[57]: 
   key  lval  rval
0  foo     1     4
1  foo     1     5
2  foo     2     4
3  foo     2     5

Another example that can be given is:

In [58]: left = md.DataFrame({'key': ['foo', 'bar'], 'lval': [1, 2]})

In [59]: right = md.DataFrame({'key': ['foo', 'bar'], 'rval': [4, 5]})

In [60]: left.execute()
Out[60]: 
   key  lval
0  foo     1
1  bar     2

In [61]: right.execute()
Out[61]: 
   key  rval
0  foo     4
1  bar     5

In [62]: md.merge(left, right, on='key').execute()
Out[62]: 
   key  lval  rval
0  foo     1     4
1  bar     2     5

Grouping

By “group by” we are referring to a process involving one or more of the following steps:

  • Splitting the data into groups based on some criteria

  • Applying a function to each group independently

  • Combining the results into a data structure

In [63]: df = md.DataFrame({'A': ['foo', 'bar', 'foo', 'bar',
   ....:                          'foo', 'bar', 'foo', 'foo'],
   ....:                    'B': ['one', 'one', 'two', 'three',
   ....:                          'two', 'two', 'one', 'three'],
   ....:                    'C': mt.random.randn(8),
   ....:                    'D': mt.random.randn(8)})
   ....: 

In [64]: df.execute()
Out[64]: 
     A      B         C         D
0  foo    one  0.533526 -0.853642
1  bar    one -1.119476  1.208151
2  foo    two  1.454714  0.526749
3  bar  three  0.119490 -0.463419
4  foo    two -0.757796  1.510202
5  bar    two -1.225713  0.495087
6  foo    one -0.028903  0.650819
7  foo  three  1.118328  1.324734

Grouping and then applying the sum() function to the resulting groups.

In [65]: df.groupby('A').sum().execute()
Out[65]: 
            C         D
A                      
bar -2.225699  1.239819
foo  2.319870  3.158862

Grouping by multiple columns forms a hierarchical index, and again we can apply the sum function.

In [66]: df.groupby(['A', 'B']).sum().execute()
Out[66]: 
                  C         D
A   B                        
bar one   -1.119476  1.208151
    three  0.119490 -0.463419
    two   -1.225713  0.495087
foo one    0.504624 -0.202824
    three  1.118328  1.324734
    two    0.696918  2.036951

Plotting

We use the standard convention for referencing the matplotlib API:

In [67]: import matplotlib.pyplot as plt

In [68]: plt.close('all')
In [69]: ts = md.Series(mt.random.randn(1000),
   ....:                index=md.date_range('1/1/2000', periods=1000))
   ....: 

In [70]: ts = ts.cumsum()

In [71]: ts.plot()
Out[71]: <AxesSubplot:>
../../_images/series_plot_basic.png

On a DataFrame, the plot() method is a convenience to plot all of the columns with labels:

In [72]: df = md.DataFrame(mt.random.randn(1000, 4), index=ts.index,
   ....:                   columns=['A', 'B', 'C', 'D'])
   ....: 

In [73]: df = df.cumsum()

In [74]: plt.figure()
Out[74]: <Figure size 640x480 with 0 Axes>

In [75]: df.plot()
Out[75]: <AxesSubplot:>

In [76]: plt.legend(loc='best')
Out[76]: <matplotlib.legend.Legend at 0x7f4b32fb4150>
../../_images/frame_plot_basic.png

Getting data in/out

CSV

In [77]: df.to_csv('foo.csv').execute()
Out[77]: 
Empty DataFrame
Columns: []
Index: []

Reading from a csv file.

In [78]: md.read_csv('foo.csv').execute()
Out[78]: 
     Unnamed: 0          A          B          C          D
0    2000-01-01  -0.981105   1.913908  -0.661294  -0.210964
1    2000-01-02  -1.035318   0.835594  -0.419938   0.703844
2    2000-01-03  -1.836223   1.421732   0.454346   0.673662
3    2000-01-04  -2.259643   0.002368  -1.707156   0.897979
4    2000-01-05  -1.235017   0.508093  -1.311825   1.932156
..          ...        ...        ...        ...        ...
995  2002-09-22 -14.576360  19.059307  27.982727  14.289766
996  2002-09-23 -13.955815  19.190226  27.564814  14.083096
997  2002-09-24 -14.602541  20.191390  29.156286  13.154644
998  2002-09-25 -15.063893  21.286490  28.108586  13.253978
999  2002-09-26 -15.097882  21.109083  28.416373  12.642112

[1000 rows x 5 columns]