10 minutes to Mars DataFrame

This is a short introduction to Mars DataFrame which is originated from 10 minutes to pandas.

Customarily, we import as follows:

In [1]: import mars

In [2]: import mars.tensor as mt

In [3]: import mars.dataframe as md

Now create a new default session.

In [4]: mars.new_session()
Out[4]: <mars.deploy.oscar.session.SyncSession at 0x7f26ddefcad0>

Object creation

Creating a Series by passing a list of values, letting it create a default integer index:

In [5]: s = md.Series([1, 3, 5, mt.nan, 6, 8])

In [6]: s.execute()
Out[6]: 
0    1.0
1    3.0
2    5.0
3    NaN
4    6.0
5    8.0
dtype: float64

Creating a DataFrame by passing a Mars tensor, with a datetime index and labeled columns:

In [7]: dates = md.date_range('20130101', periods=6)

In [8]: dates.execute()
Out[8]: 
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
               '2013-01-05', '2013-01-06'],
              dtype='datetime64[ns]', freq='D')

In [9]: df = md.DataFrame(mt.random.randn(6, 4), index=dates, columns=list('ABCD'))

In [10]: df.execute()
Out[10]: 
                   A         B         C         D
2013-01-01  0.612509 -0.173117  2.714119  1.994359
2013-01-02  0.667038  0.320303 -0.848741  0.292421
2013-01-03  0.564992  1.278180  1.974249 -1.525575
2013-01-04  0.158850 -0.672767 -0.368342  0.258201
2013-01-05  1.399574  0.968248  0.917410 -0.265619
2013-01-06 -1.357295 -0.410361  0.313132  0.698699

Creating a DataFrame by passing a dict of objects that can be converted to series-like.

In [11]: df2 = md.DataFrame({'A': 1.,
   ....:                     'B': md.Timestamp('20130102'),
   ....:                     'C': md.Series(1, index=list(range(4)), dtype='float32'),
   ....:                     'D': mt.array([3] * 4, dtype='int32'),
   ....:                     'E': 'foo'})
   ....: 

In [12]: df2.execute()
Out[12]: 
     A          B    C  D    E
0  1.0 2013-01-02  1.0  3  foo
1  1.0 2013-01-02  1.0  3  foo
2  1.0 2013-01-02  1.0  3  foo
3  1.0 2013-01-02  1.0  3  foo

The columns of the resulting DataFrame have different dtypes.

In [13]: df2.dtypes
Out[13]: 
A           float64
B    datetime64[ns]
C           float32
D             int32
E            object
dtype: object

Viewing data

Here is how to view the top and bottom rows of the frame:

In [14]: df.head().execute()
Out[14]: 
                   A         B         C         D
2013-01-01  0.612509 -0.173117  2.714119  1.994359
2013-01-02  0.667038  0.320303 -0.848741  0.292421
2013-01-03  0.564992  1.278180  1.974249 -1.525575
2013-01-04  0.158850 -0.672767 -0.368342  0.258201
2013-01-05  1.399574  0.968248  0.917410 -0.265619

In [15]: df.tail(3).execute()
Out[15]: 
                   A         B         C         D
2013-01-04  0.158850 -0.672767 -0.368342  0.258201
2013-01-05  1.399574  0.968248  0.917410 -0.265619
2013-01-06 -1.357295 -0.410361  0.313132  0.698699

Display the index, columns:

In [16]: df.index.execute()
Out[16]: 
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
               '2013-01-05', '2013-01-06'],
              dtype='datetime64[ns]', freq='D')

In [17]: df.columns.execute()
Out[17]: Index(['A', 'B', 'C', 'D'], dtype='object')

DataFrame.to_tensor() gives a Mars tensor representation of the underlying data. Note that this can be an expensive operation when your DataFrame has columns with different data types, which comes down to a fundamental difference between DataFrame and tensor: tensors have one dtype for the entire tensor, while DataFrames have one dtype per column. When you call DataFrame.to_tensor(), Mars DataFrame will find the tensor dtype that can hold all of the dtypes in the DataFrame. This may end up being object, which requires casting every value to a Python object.

For df, our DataFrame of all floating-point values, DataFrame.to_tensor() is fast and doesn’t require copying data.

In [18]: df.to_tensor().execute()
Out[18]: 
array([[ 0.61250867, -0.17311674,  2.71411906,  1.99435889],
       [ 0.66703798,  0.32030308, -0.84874085,  0.29242138],
       [ 0.56499169,  1.2781802 ,  1.97424878, -1.52557508],
       [ 0.15884989, -0.67276679, -0.36834228,  0.25820094],
       [ 1.39957398,  0.9682483 ,  0.91741035, -0.2656194 ],
       [-1.35729515, -0.41036109,  0.31313174,  0.69869872]])

For df2, the DataFrame with multiple dtypes, DataFrame.to_tensor() is relatively expensive.

In [19]: df2.to_tensor().execute()
Out[19]: 
array([[1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo'],
       [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo'],
       [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo'],
       [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo']],
      dtype=object)

Note

DataFrame.to_tensor() does not include the index or column labels in the output.

describe() shows a quick statistic summary of your data:

In [20]: df.describe().execute()
Out[20]: 
              A         B         C         D
count  6.000000  6.000000  6.000000  6.000000
mean   0.340945  0.218414  0.783638  0.242081
std    0.923921  0.779563  1.369328  1.154482
min   -1.357295 -0.672767 -0.848741 -1.525575
25%    0.260385 -0.351050 -0.197974 -0.134664
50%    0.588750  0.073593  0.615271  0.275311
75%    0.653406  0.806262  1.710039  0.597129
max    1.399574  1.278180  2.714119  1.994359

Sorting by an axis:

In [21]: df.sort_index(axis=1, ascending=False).execute()
Out[21]: 
                   D         C         B         A
2013-01-01  1.994359  2.714119 -0.173117  0.612509
2013-01-02  0.292421 -0.848741  0.320303  0.667038
2013-01-03 -1.525575  1.974249  1.278180  0.564992
2013-01-04  0.258201 -0.368342 -0.672767  0.158850
2013-01-05 -0.265619  0.917410  0.968248  1.399574
2013-01-06  0.698699  0.313132 -0.410361 -1.357295

Sorting by values:

In [22]: df.sort_values(by='B').execute()
Out[22]: 
                   A         B         C         D
2013-01-04  0.158850 -0.672767 -0.368342  0.258201
2013-01-06 -1.357295 -0.410361  0.313132  0.698699
2013-01-01  0.612509 -0.173117  2.714119  1.994359
2013-01-02  0.667038  0.320303 -0.848741  0.292421
2013-01-05  1.399574  0.968248  0.917410 -0.265619
2013-01-03  0.564992  1.278180  1.974249 -1.525575

Selection

Note

While standard Python / Numpy expressions for selecting and setting are intuitive and come in handy for interactive work, for production code, we recommend the optimized DataFrame data access methods, .at, .iat, .loc and .iloc.

Getting

Selecting a single column, which yields a Series, equivalent to df.A:

In [23]: df['A'].execute()
Out[23]: 
2013-01-01    0.612509
2013-01-02    0.667038
2013-01-03    0.564992
2013-01-04    0.158850
2013-01-05    1.399574
2013-01-06   -1.357295
Freq: D, Name: A, dtype: float64

Selecting via [], which slices the rows.

In [24]: df[0:3].execute()
Out[24]: 
                   A         B         C         D
2013-01-01  0.612509 -0.173117  2.714119  1.994359
2013-01-02  0.667038  0.320303 -0.848741  0.292421
2013-01-03  0.564992  1.278180  1.974249 -1.525575

In [25]: df['20130102':'20130104'].execute()
Out[25]: 
                   A         B         C         D
2013-01-02  0.667038  0.320303 -0.848741  0.292421
2013-01-03  0.564992  1.278180  1.974249 -1.525575
2013-01-04  0.158850 -0.672767 -0.368342  0.258201

Selection by label

For getting a cross section using a label:

In [26]: df.loc['20130101'].execute()
Out[26]: 
A    0.612509
B   -0.173117
C    2.714119
D    1.994359
Name: 2013-01-01 00:00:00, dtype: float64

Selecting on a multi-axis by label:

In [27]: df.loc[:, ['A', 'B']].execute()
Out[27]: 
                   A         B
2013-01-01  0.612509 -0.173117
2013-01-02  0.667038  0.320303
2013-01-03  0.564992  1.278180
2013-01-04  0.158850 -0.672767
2013-01-05  1.399574  0.968248
2013-01-06 -1.357295 -0.410361

Showing label slicing, both endpoints are included:

In [28]: df.loc['20130102':'20130104', ['A', 'B']].execute()
Out[28]: 
                   A         B
2013-01-02  0.667038  0.320303
2013-01-03  0.564992  1.278180
2013-01-04  0.158850 -0.672767

Reduction in the dimensions of the returned object:

In [29]: df.loc['20130102', ['A', 'B']].execute()
Out[29]: 
A    0.667038
B    0.320303
Name: 2013-01-02 00:00:00, dtype: float64

For getting a scalar value:

In [30]: df.loc['20130101', 'A'].execute()
Out[30]: 0.6125086694517746

For getting fast access to a scalar (equivalent to the prior method):

In [31]: df.at['20130101', 'A'].execute()
Out[31]: 0.6125086694517746

Selection by position

Select via the position of the passed integers:

In [32]: df.iloc[3].execute()
Out[32]: 
A    0.158850
B   -0.672767
C   -0.368342
D    0.258201
Name: 2013-01-04 00:00:00, dtype: float64

By integer slices, acting similar to numpy/python:

In [33]: df.iloc[3:5, 0:2].execute()
Out[33]: 
                   A         B
2013-01-04  0.158850 -0.672767
2013-01-05  1.399574  0.968248

By lists of integer position locations, similar to the numpy/python style:

In [34]: df.iloc[[1, 2, 4], [0, 2]].execute()
Out[34]: 
                   A         C
2013-01-02  0.667038 -0.848741
2013-01-03  0.564992  1.974249
2013-01-05  1.399574  0.917410

For slicing rows explicitly:

In [35]: df.iloc[1:3, :].execute()
Out[35]: 
                   A         B         C         D
2013-01-02  0.667038  0.320303 -0.848741  0.292421
2013-01-03  0.564992  1.278180  1.974249 -1.525575

For slicing columns explicitly:

In [36]: df.iloc[:, 1:3].execute()
Out[36]: 
                   B         C
2013-01-01 -0.173117  2.714119
2013-01-02  0.320303 -0.848741
2013-01-03  1.278180  1.974249
2013-01-04 -0.672767 -0.368342
2013-01-05  0.968248  0.917410
2013-01-06 -0.410361  0.313132

For getting a value explicitly:

In [37]: df.iloc[1, 1].execute()
Out[37]: 0.32030308078473263

For getting fast access to a scalar (equivalent to the prior method):

In [38]: df.iat[1, 1].execute()
Out[38]: 0.32030308078473263

Boolean indexing

Using a single column’s values to select data.

In [39]: df[df['A'] > 0].execute()
Out[39]: 
                   A         B         C         D
2013-01-01  0.612509 -0.173117  2.714119  1.994359
2013-01-02  0.667038  0.320303 -0.848741  0.292421
2013-01-03  0.564992  1.278180  1.974249 -1.525575
2013-01-04  0.158850 -0.672767 -0.368342  0.258201
2013-01-05  1.399574  0.968248  0.917410 -0.265619

Selecting values from a DataFrame where a boolean condition is met.

In [40]: df[df > 0].execute()
Out[40]: 
                   A         B         C         D
2013-01-01  0.612509       NaN  2.714119  1.994359
2013-01-02  0.667038  0.320303       NaN  0.292421
2013-01-03  0.564992  1.278180  1.974249       NaN
2013-01-04  0.158850       NaN       NaN  0.258201
2013-01-05  1.399574  0.968248  0.917410       NaN
2013-01-06       NaN       NaN  0.313132  0.698699

Operations

Stats

Operations in general exclude missing data.

Performing a descriptive statistic:

In [41]: df.mean().execute()
Out[41]: 
A    0.340945
B    0.218414
C    0.783638
D    0.242081
dtype: float64

Same operation on the other axis:

In [42]: df.mean(1).execute()
Out[42]: 
2013-01-01    1.286967
2013-01-02    0.107755
2013-01-03    0.572961
2013-01-04   -0.156015
2013-01-05    0.754903
2013-01-06   -0.188956
Freq: D, dtype: float64

Operating with objects that have different dimensionality and need alignment. In addition, Mars DataFrame automatically broadcasts along the specified dimension.

In [43]: s = md.Series([1, 3, 5, mt.nan, 6, 8], index=dates).shift(2)

In [44]: s.execute()
Out[44]: 
2013-01-01    NaN
2013-01-02    NaN
2013-01-03    1.0
2013-01-04    3.0
2013-01-05    5.0
2013-01-06    NaN
Freq: D, dtype: float64

In [45]: df.sub(s, axis='index').execute()
Out[45]: 
                   A         B         C         D
2013-01-01       NaN       NaN       NaN       NaN
2013-01-02       NaN       NaN       NaN       NaN
2013-01-03 -0.435008  0.278180  0.974249 -2.525575
2013-01-04 -2.841150 -3.672767 -3.368342 -2.741799
2013-01-05 -3.600426 -4.031752 -4.082590 -5.265619
2013-01-06       NaN       NaN       NaN       NaN

Apply

Applying functions to the data:

In [46]: df.apply(lambda x: x.max() - x.min()).execute()
Out[46]: 
A    2.756869
B    1.950947
C    3.562860
D    3.519934
dtype: float64

String Methods

Series is equipped with a set of string processing methods in the str attribute that make it easy to operate on each element of the array, as in the code snippet below. Note that pattern-matching in str generally uses regular expressions by default (and in some cases always uses them). See more at Vectorized String Methods.

In [47]: s = md.Series(['A', 'B', 'C', 'Aaba', 'Baca', mt.nan, 'CABA', 'dog', 'cat'])

In [48]: s.str.lower().execute()
Out[48]: 
0       a
1       b
2       c
3    aaba
4    baca
5     NaN
6    caba
7     dog
8     cat
dtype: object

Merge

Concat

Mars DataFrame provides various facilities for easily combining together Series and DataFrame objects with various kinds of set logic for the indexes and relational algebra functionality in the case of join / merge-type operations.

Concatenating DataFrame objects together with concat():

In [49]: df = md.DataFrame(mt.random.randn(10, 4))

In [50]: df.execute()
Out[50]: 
          0         1         2         3
0  0.392163 -1.180503  0.308954 -0.476383
1 -0.643694  0.330282  0.233983 -1.858699
2 -0.980115 -2.164547 -1.450455  0.486994
3 -0.311438  0.530217 -0.547803 -0.695146
4  0.320900  0.383052  0.338320  0.221177
5 -1.321418 -0.901024  0.931401  0.768191
6  0.219049  0.809248 -1.206234  1.664526
7  0.580689 -0.844961 -1.636815 -0.677618
8  0.335160  0.717138 -1.286026  1.385991
9  1.070349 -2.910198 -1.412053 -1.318169

# break it into pieces
In [51]: pieces = [df[:3], df[3:7], df[7:]]

In [52]: md.concat(pieces).execute()
Out[52]: 
          0         1         2         3
0  0.392163 -1.180503  0.308954 -0.476383
1 -0.643694  0.330282  0.233983 -1.858699
2 -0.980115 -2.164547 -1.450455  0.486994
3 -0.311438  0.530217 -0.547803 -0.695146
4  0.320900  0.383052  0.338320  0.221177
5 -1.321418 -0.901024  0.931401  0.768191
6  0.219049  0.809248 -1.206234  1.664526
7  0.580689 -0.844961 -1.636815 -0.677618
8  0.335160  0.717138 -1.286026  1.385991
9  1.070349 -2.910198 -1.412053 -1.318169

Note

Adding a column to a DataFrame is relatively fast. However, adding a row requires a copy, and may be expensive. We recommend passing a pre-built list of records to the DataFrame constructor instead of building a DataFrame by iteratively appending records to it.

Join

SQL style merges. See the Database style joining section.

In [53]: left = md.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]})

In [54]: right = md.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]})

In [55]: left.execute()
Out[55]: 
   key  lval
0  foo     1
1  foo     2

In [56]: right.execute()
Out[56]: 
   key  rval
0  foo     4
1  foo     5

In [57]: md.merge(left, right, on='key').execute()
Out[57]: 
   key  lval  rval
0  foo     1     4
1  foo     1     5
2  foo     2     4
3  foo     2     5

Another example that can be given is:

In [58]: left = md.DataFrame({'key': ['foo', 'bar'], 'lval': [1, 2]})

In [59]: right = md.DataFrame({'key': ['foo', 'bar'], 'rval': [4, 5]})

In [60]: left.execute()
Out[60]: 
   key  lval
0  foo     1
1  bar     2

In [61]: right.execute()
Out[61]: 
   key  rval
0  foo     4
1  bar     5

In [62]: md.merge(left, right, on='key').execute()
Out[62]: 
   key  lval  rval
0  foo     1     4
1  bar     2     5

Grouping

By “group by” we are referring to a process involving one or more of the following steps:

  • Splitting the data into groups based on some criteria

  • Applying a function to each group independently

  • Combining the results into a data structure

In [63]: df = md.DataFrame({'A': ['foo', 'bar', 'foo', 'bar',
   ....:                          'foo', 'bar', 'foo', 'foo'],
   ....:                    'B': ['one', 'one', 'two', 'three',
   ....:                          'two', 'two', 'one', 'three'],
   ....:                    'C': mt.random.randn(8),
   ....:                    'D': mt.random.randn(8)})
   ....: 

In [64]: df.execute()
Out[64]: 
     A      B         C         D
0  foo    one  0.836846  0.233225
1  bar    one -2.435075 -1.399957
2  foo    two -1.042548  1.805187
3  bar  three  1.350988  0.327271
4  foo    two  0.873994  0.036055
5  bar    two  1.395117  0.716503
6  foo    one  0.977119 -1.419242
7  foo  three -0.498457  0.912835

Grouping and then applying the sum() function to the resulting groups.

In [65]: df.groupby('A').sum().execute()
Out[65]: 
            C         D
A                      
bar  0.311030 -0.356182
foo  1.146954  1.568060

Grouping by multiple columns forms a hierarchical index, and again we can apply the sum function.

In [66]: df.groupby(['A', 'B']).sum().execute()
Out[66]: 
                  C         D
A   B                        
bar one   -2.435075 -1.399957
    three  1.350988  0.327271
    two    1.395117  0.716503
foo one    1.813965 -1.186018
    three -0.498457  0.912835
    two   -0.168554  1.841242

Plotting

We use the standard convention for referencing the matplotlib API:

In [67]: import matplotlib.pyplot as plt

In [68]: plt.close('all')
In [69]: ts = md.Series(mt.random.randn(1000),
   ....:                index=md.date_range('1/1/2000', periods=1000))
   ....: 

In [70]: ts = ts.cumsum()

In [71]: ts.plot()
Out[71]: <AxesSubplot:>
../../_images/series_plot_basic.png

On a DataFrame, the plot() method is a convenience to plot all of the columns with labels:

In [72]: df = md.DataFrame(mt.random.randn(1000, 4), index=ts.index,
   ....:                   columns=['A', 'B', 'C', 'D'])
   ....: 

In [73]: df = df.cumsum()

In [74]: plt.figure()
Out[74]: <Figure size 640x480 with 0 Axes>

In [75]: df.plot()
Out[75]: <AxesSubplot:>

In [76]: plt.legend(loc='best')
Out[76]: <matplotlib.legend.Legend at 0x7f26dee51810>
../../_images/frame_plot_basic.png

Getting data in/out

CSV

In [77]: df.to_csv('foo.csv').execute()
Out[77]: 
Empty DataFrame
Columns: []
Index: []

Reading from a csv file.

In [78]: md.read_csv('foo.csv').execute()
Out[78]: 
     Unnamed: 0         A          B         C          D
0    2000-01-01 -1.027586   0.481455  0.665315   0.424971
1    2000-01-02 -1.025052   0.794528  0.179936   1.051374
2    2000-01-03 -0.466694  -0.093162  1.038509   0.880496
3    2000-01-04 -2.529604   0.907036  2.880652   0.174588
4    2000-01-05 -3.660128   0.464360  4.181216  -1.662126
..          ...       ...        ...       ...        ...
995  2002-09-22 -1.573871 -37.825188  7.725830 -34.907312
996  2002-09-23 -0.833625 -38.069050  7.503748 -35.848106
997  2002-09-24 -2.195992 -38.981021  5.207587 -37.535640
998  2002-09-25 -2.365478 -38.622382  5.315007 -37.387363
999  2002-09-26 -3.233688 -38.618008  5.371838 -36.989378

[1000 rows x 5 columns]