10 minutes to Mars DataFrame

This is a short introduction to Mars DataFrame which is originated from 10 minutes to pandas.

Customarily, we import as follows:

In [1]: import mars.tensor as mt

In [2]: import mars.dataframe as md

Object creation

Creating a Series by passing a list of values, letting it create a default integer index:

In [3]: s = md.Series([1, 3, 5, mt.nan, 6, 8])

In [4]: s.execute()
Out[4]: 
0    1.0
1    3.0
2    5.0
3    NaN
4    6.0
5    8.0
dtype: float64

Creating a DataFrame by passing a Mars tensor, with a datetime index and labeled columns:

In [5]: dates = md.date_range('20130101', periods=6)

In [6]: dates.execute()
Out[6]: 
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
               '2013-01-05', '2013-01-06'],
              dtype='datetime64[ns]', freq='D')

In [7]: df = md.DataFrame(mt.random.randn(6, 4), index=dates, columns=list('ABCD'))

In [8]: df.execute()
Out[8]: 
                   A         B         C         D
2013-01-01 -0.120158 -0.040134 -2.430967  0.507171
2013-01-02  1.003609  0.814796  1.091861  1.882128
2013-01-03 -0.366732  2.914654  1.027408 -0.778850
2013-01-04  1.569097 -0.831328  0.711279 -1.069198
2013-01-05 -0.902673  0.023938  0.847465 -0.152080
2013-01-06  2.531149  0.421086  0.511665  0.503603

Creating a DataFrame by passing a dict of objects that can be converted to series-like.

In [9]: df2 = md.DataFrame({'A': 1.,
   ...:                     'B': md.Timestamp('20130102'),
   ...:                     'C': md.Series(1, index=list(range(4)), dtype='float32'),
   ...:                     'D': mt.array([3] * 4, dtype='int32'),
   ...:                     'E': 'foo'})
   ...: 

In [10]: df2.execute()
Out[10]: 
     A          B    C  D    E
0  1.0 2013-01-02  1.0  3  foo
1  1.0 2013-01-02  1.0  3  foo
2  1.0 2013-01-02  1.0  3  foo
3  1.0 2013-01-02  1.0  3  foo

The columns of the resulting DataFrame have different dtypes.

In [11]: df2.dtypes
Out[11]: 
A           float64
B    datetime64[ns]
C           float32
D             int32
E            object
dtype: object

Viewing data

Here is how to view the top and bottom rows of the frame:

In [12]: df.head().execute()
Out[12]: 
                   A         B         C         D
2013-01-01 -0.120158 -0.040134 -2.430967  0.507171
2013-01-02  1.003609  0.814796  1.091861  1.882128
2013-01-03 -0.366732  2.914654  1.027408 -0.778850
2013-01-04  1.569097 -0.831328  0.711279 -1.069198
2013-01-05 -0.902673  0.023938  0.847465 -0.152080

In [13]: df.tail(3).execute()
Out[13]: 
                   A         B         C         D
2013-01-04  1.569097 -0.831328  0.711279 -1.069198
2013-01-05 -0.902673  0.023938  0.847465 -0.152080
2013-01-06  2.531149  0.421086  0.511665  0.503603

Display the index, columns:

In [14]: df.index.execute()
Out[14]: 
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
               '2013-01-05', '2013-01-06'],
              dtype='datetime64[ns]', freq='D')

In [15]: df.columns.execute()
Out[15]: Index(['A', 'B', 'C', 'D'], dtype='object')

DataFrame.to_tensor() gives a Mars tensor representation of the underlying data. Note that this can be an expensive operation when your DataFrame has columns with different data types, which comes down to a fundamental difference between DataFrame and tensor: tensors have one dtype for the entire tensor, while DataFrames have one dtype per column. When you call DataFrame.to_tensor(), Mars DataFrame will find the tensor dtype that can hold all of the dtypes in the DataFrame. This may end up being object, which requires casting every value to a Python object.

For df, our DataFrame of all floating-point values, DataFrame.to_tensor() is fast and doesn’t require copying data.

In [16]: df.to_tensor().execute()
Out[16]: 
array([[-0.12015799, -0.04013391, -2.43096663,  0.50717122],
       [ 1.00360941,  0.81479583,  1.09186133,  1.88212826],
       [-0.36673249,  2.9146545 ,  1.02740799, -0.77884954],
       [ 1.56909745, -0.83132794,  0.7112787 , -1.06919811],
       [-0.90267342,  0.02393847,  0.847465  , -0.15207997],
       [ 2.53114908,  0.42108618,  0.51166509,  0.50360284]])

For df2, the DataFrame with multiple dtypes, DataFrame.to_tensor() is relatively expensive.

In [17]: df2.to_tensor().execute()
Out[17]: 
array([[1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo'],
       [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo'],
       [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo'],
       [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo']],
      dtype=object)

Note

DataFrame.to_tensor() does not include the index or column labels in the output.

describe() shows a quick statistic summary of your data:

In [18]: df.describe().execute()
Out[18]: 
              A         B         C         D
count  6.000000  6.000000  6.000000  6.000000
mean   0.619049  0.550502  0.293119  0.148796
std    1.306938  1.281514  1.351128  1.067082
min   -0.902673 -0.831328 -2.430967 -1.069198
25%   -0.305089 -0.024116  0.561568 -0.622157
50%    0.441726  0.222512  0.779372  0.175761
75%    1.427725  0.716368  0.982422  0.506279
max    2.531149  2.914654  1.091861  1.882128

Sorting by an axis:

In [19]: df.sort_index(axis=1, ascending=False).execute()
Out[19]: 
                   D         C         B         A
2013-01-01  0.507171 -2.430967 -0.040134 -0.120158
2013-01-02  1.882128  1.091861  0.814796  1.003609
2013-01-03 -0.778850  1.027408  2.914654 -0.366732
2013-01-04 -1.069198  0.711279 -0.831328  1.569097
2013-01-05 -0.152080  0.847465  0.023938 -0.902673
2013-01-06  0.503603  0.511665  0.421086  2.531149

Sorting by values:

In [20]: df.sort_values(by='B').execute()
Out[20]: 
                   A         B         C         D
2013-01-04  1.569097 -0.831328  0.711279 -1.069198
2013-01-01 -0.120158 -0.040134 -2.430967  0.507171
2013-01-05 -0.902673  0.023938  0.847465 -0.152080
2013-01-06  2.531149  0.421086  0.511665  0.503603
2013-01-02  1.003609  0.814796  1.091861  1.882128
2013-01-03 -0.366732  2.914654  1.027408 -0.778850

Selection

Note

While standard Python / Numpy expressions for selecting and setting are intuitive and come in handy for interactive work, for production code, we recommend the optimized DataFrame data access methods, .at, .iat, .loc and .iloc.

Getting

Selecting a single column, which yields a Series, equivalent to df.A:

In [21]: df['A'].execute()
Out[21]: 
2013-01-01   -0.120158
2013-01-02    1.003609
2013-01-03   -0.366732
2013-01-04    1.569097
2013-01-05   -0.902673
2013-01-06    2.531149
Freq: D, Name: A, dtype: float64

Selecting via [], which slices the rows.

In [22]: df[0:3].execute()
Out[22]: 
                   A         B         C         D
2013-01-01 -0.120158 -0.040134 -2.430967  0.507171
2013-01-02  1.003609  0.814796  1.091861  1.882128
2013-01-03 -0.366732  2.914654  1.027408 -0.778850

In [23]: df['20130102':'20130104'].execute()
Out[23]: 
                   A         B         C         D
2013-01-02  1.003609  0.814796  1.091861  1.882128
2013-01-03 -0.366732  2.914654  1.027408 -0.778850
2013-01-04  1.569097 -0.831328  0.711279 -1.069198

Selection by label

For getting a cross section using a label:

In [24]: df.loc['20130101'].execute()
Out[24]: 
A   -0.120158
B   -0.040134
C   -2.430967
D    0.507171
Name: 2013-01-01 00:00:00, dtype: float64

Selecting on a multi-axis by label:

In [25]: df.loc[:, ['A', 'B']].execute()
Out[25]: 
                   A         B
2013-01-01 -0.120158 -0.040134
2013-01-02  1.003609  0.814796
2013-01-03 -0.366732  2.914654
2013-01-04  1.569097 -0.831328
2013-01-05 -0.902673  0.023938
2013-01-06  2.531149  0.421086

Showing label slicing, both endpoints are included:

In [26]: df.loc['20130102':'20130104', ['A', 'B']].execute()
Out[26]: 
                   A         B
2013-01-02  1.003609  0.814796
2013-01-03 -0.366732  2.914654
2013-01-04  1.569097 -0.831328

Reduction in the dimensions of the returned object:

In [27]: df.loc['20130102', ['A', 'B']].execute()
Out[27]: 
A    1.003609
B    0.814796
Name: 2013-01-02 00:00:00, dtype: float64

For getting a scalar value:

In [28]: df.loc['20130101', 'A'].execute()
Out[28]: -0.12015799114003474

For getting fast access to a scalar (equivalent to the prior method):

In [29]: df.at['20130101', 'A'].execute()
Out[29]: -0.12015799114003474

Selection by position

Select via the position of the passed integers:

In [30]: df.iloc[3].execute()
Out[30]: 
A    1.569097
B   -0.831328
C    0.711279
D   -1.069198
Name: 2013-01-04 00:00:00, dtype: float64

By integer slices, acting similar to numpy/python:

In [31]: df.iloc[3:5, 0:2].execute()
Out[31]: 
                   A         B
2013-01-04  1.569097 -0.831328
2013-01-05 -0.902673  0.023938

By lists of integer position locations, similar to the numpy/python style:

In [32]: df.iloc[[1, 2, 4], [0, 2]].execute()
Out[32]: 
                   A         C
2013-01-02  1.003609  1.091861
2013-01-03 -0.366732  1.027408
2013-01-05 -0.902673  0.847465

For slicing rows explicitly:

In [33]: df.iloc[1:3, :].execute()
Out[33]: 
                   A         B         C         D
2013-01-02  1.003609  0.814796  1.091861  1.882128
2013-01-03 -0.366732  2.914654  1.027408 -0.778850

For slicing columns explicitly:

In [34]: df.iloc[:, 1:3].execute()
Out[34]: 
                   B         C
2013-01-01 -0.040134 -2.430967
2013-01-02  0.814796  1.091861
2013-01-03  2.914654  1.027408
2013-01-04 -0.831328  0.711279
2013-01-05  0.023938  0.847465
2013-01-06  0.421086  0.511665

For getting a value explicitly:

In [35]: df.iloc[1, 1].execute()
Out[35]: 0.8147958293978422

For getting fast access to a scalar (equivalent to the prior method):

In [36]: df.iat[1, 1].execute()
Out[36]: 0.8147958293978422

Boolean indexing

Using a single column’s values to select data.

In [37]: df[df['A'] > 0].execute()
Out[37]: 
                   A         B         C         D
2013-01-02  1.003609  0.814796  1.091861  1.882128
2013-01-04  1.569097 -0.831328  0.711279 -1.069198
2013-01-06  2.531149  0.421086  0.511665  0.503603

Selecting values from a DataFrame where a boolean condition is met.

In [38]: df[df > 0].execute()
Out[38]: 
                   A         B         C         D
2013-01-01       NaN       NaN       NaN  0.507171
2013-01-02  1.003609  0.814796  1.091861  1.882128
2013-01-03       NaN  2.914654  1.027408       NaN
2013-01-04  1.569097       NaN  0.711279       NaN
2013-01-05       NaN  0.023938  0.847465       NaN
2013-01-06  2.531149  0.421086  0.511665  0.503603

Operations

Stats

Operations in general exclude missing data.

Performing a descriptive statistic:

In [39]: df.mean().execute()
Out[39]: 
A    0.619049
B    0.550502
C    0.293119
D    0.148796
dtype: float64

Same operation on the other axis:

In [40]: df.mean(1).execute()
Out[40]: 
2013-01-01   -0.521022
2013-01-02    1.198099
2013-01-03    0.699120
2013-01-04    0.094963
2013-01-05   -0.045837
2013-01-06    0.991876
Freq: D, dtype: float64

Operating with objects that have different dimensionality and need alignment. In addition, Mars DataFrame automatically broadcasts along the specified dimension.

In [41]: s = md.Series([1, 3, 5, mt.nan, 6, 8], index=dates).shift(2)

In [42]: s.execute()
Out[42]: 
2013-01-01    NaN
2013-01-02    NaN
2013-01-03    1.0
2013-01-04    3.0
2013-01-05    5.0
2013-01-06    NaN
Freq: D, dtype: float64

In [43]: df.sub(s, axis='index').execute()
Out[43]: 
                   A         B         C         D
2013-01-01       NaN       NaN       NaN       NaN
2013-01-02       NaN       NaN       NaN       NaN
2013-01-03 -1.366732  1.914654  0.027408 -1.778850
2013-01-04 -1.430903 -3.831328 -2.288721 -4.069198
2013-01-05 -5.902673 -4.976062 -4.152535 -5.152080
2013-01-06       NaN       NaN       NaN       NaN

Apply

Applying functions to the data:

In [44]: df.apply(lambda x: x.max() - x.min()).execute()
Out[44]: 
A    3.433822
B    3.745982
C    3.522828
D    2.951326
dtype: float64

String Methods

Series is equipped with a set of string processing methods in the str attribute that make it easy to operate on each element of the array, as in the code snippet below. Note that pattern-matching in str generally uses regular expressions by default (and in some cases always uses them). See more at Vectorized String Methods.

In [45]: s = md.Series(['A', 'B', 'C', 'Aaba', 'Baca', mt.nan, 'CABA', 'dog', 'cat'])

In [46]: s.str.lower().execute()
Out[46]: 
0       a
1       b
2       c
3    aaba
4    baca
5     NaN
6    caba
7     dog
8     cat
dtype: object

Merge

Concat

Mars DataFrame provides various facilities for easily combining together Series and DataFrame objects with various kinds of set logic for the indexes and relational algebra functionality in the case of join / merge-type operations.

Concatenating DataFrame objects together with concat():

In [47]: df = md.DataFrame(mt.random.randn(10, 4))

In [48]: df.execute()
Out[48]: 
          0         1         2         3
0  0.626268  0.454423  0.699246 -0.182832
1  0.679943  1.012039 -0.824650  0.603742
2  1.149038 -2.003584 -1.417892  0.648638
3  1.824861  0.640595 -2.686665 -1.504616
4  1.266308 -0.554611  0.237674  0.102814
5  1.349196 -0.048248  0.460777 -0.883182
6 -1.881278  0.396064  1.771801 -0.446482
7  1.158092 -1.145694 -0.599761 -1.395103
8 -0.342691  0.238440  0.067866 -1.292253
9 -0.994050 -0.160303  0.536953  0.220982

# break it into pieces
In [49]: pieces = [df[:3], df[3:7], df[7:]]

In [50]: md.concat(pieces).execute()
Out[50]: 
          0         1         2         3
0  0.626268  0.454423  0.699246 -0.182832
1  0.679943  1.012039 -0.824650  0.603742
2  1.149038 -2.003584 -1.417892  0.648638
3  1.824861  0.640595 -2.686665 -1.504616
4  1.266308 -0.554611  0.237674  0.102814
5  1.349196 -0.048248  0.460777 -0.883182
6 -1.881278  0.396064  1.771801 -0.446482
7  1.158092 -1.145694 -0.599761 -1.395103
8 -0.342691  0.238440  0.067866 -1.292253
9 -0.994050 -0.160303  0.536953  0.220982

Note

Adding a column to a DataFrame is relatively fast. However, adding a row requires a copy, and may be expensive. We recommend passing a pre-built list of records to the DataFrame constructor instead of building a DataFrame by iteratively appending records to it.

Join

SQL style merges. See the Database style joining section.

In [51]: left = md.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]})

In [52]: right = md.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]})

In [53]: left.execute()
Out[53]: 
   key  lval
0  foo     1
1  foo     2

In [54]: right.execute()
Out[54]: 
   key  rval
0  foo     4
1  foo     5

In [55]: md.merge(left, right, on='key').execute()
Out[55]: 
   key  lval  rval
0  foo     1     4
1  foo     1     5
2  foo     2     4
3  foo     2     5

Another example that can be given is:

In [56]: left = md.DataFrame({'key': ['foo', 'bar'], 'lval': [1, 2]})

In [57]: right = md.DataFrame({'key': ['foo', 'bar'], 'rval': [4, 5]})

In [58]: left.execute()
Out[58]: 
   key  lval
0  foo     1
1  bar     2

In [59]: right.execute()
Out[59]: 
   key  rval
0  foo     4
1  bar     5

In [60]: md.merge(left, right, on='key').execute()
Out[60]: 
   key  lval  rval
0  foo     1     4
1  bar     2     5

Grouping

By “group by” we are referring to a process involving one or more of the following steps:

  • Splitting the data into groups based on some criteria

  • Applying a function to each group independently

  • Combining the results into a data structure

In [61]: df = md.DataFrame({'A': ['foo', 'bar', 'foo', 'bar',
   ....:                          'foo', 'bar', 'foo', 'foo'],
   ....:                    'B': ['one', 'one', 'two', 'three',
   ....:                          'two', 'two', 'one', 'three'],
   ....:                    'C': mt.random.randn(8),
   ....:                    'D': mt.random.randn(8)})
   ....: 

In [62]: df.execute()
Out[62]: 
     A      B         C         D
0  foo    one  0.610148  0.175453
1  bar    one  3.110999 -0.049308
2  foo    two -1.274660  1.545058
3  bar  three  1.637160 -0.179529
4  foo    two  1.738358  0.094878
5  bar    two -0.965869  1.375800
6  foo    one -1.072098 -1.026966
7  foo  three  0.367772  0.006146

Grouping and then applying the sum() function to the resulting groups.

In [63]: df.groupby('A').sum().execute()
Out[63]: 
           C         D
A                     
bar  3.78229  1.146964
foo  0.36952  0.794569

Grouping by multiple columns forms a hierarchical index, and again we can apply the sum function.

In [64]: df.groupby(['A', 'B']).sum().execute()
Out[64]: 
                  C         D
A   B                        
foo one   -0.461950 -0.851513
    two    0.463699  1.639936
    three  0.367772  0.006146
bar one    3.110999 -0.049308
    two   -0.965869  1.375800
    three  1.637160 -0.179529

Plotting

We use the standard convention for referencing the matplotlib API:

In [65]: import matplotlib.pyplot as plt

In [66]: plt.close('all')
In [67]: ts = md.Series(mt.random.randn(1000),
   ....:                index=md.date_range('1/1/2000', periods=1000))
   ....: 

In [68]: ts = ts.cumsum()

In [69]: ts.plot()
Out[69]: <AxesSubplot:>
../../_images/series_plot_basic.png

On a DataFrame, the plot() method is a convenience to plot all of the columns with labels:

In [70]: df = md.DataFrame(mt.random.randn(1000, 4), index=ts.index,
   ....:                   columns=['A', 'B', 'C', 'D'])
   ....: 

In [71]: df = df.cumsum()

In [72]: plt.figure()
Out[72]: <Figure size 640x480 with 0 Axes>

In [73]: df.plot()
Out[73]: <AxesSubplot:>

In [74]: plt.legend(loc='best')
Out[74]: <matplotlib.legend.Legend at 0x7f21fe613f50>
../../_images/frame_plot_basic.png

Getting data in/out

CSV

In [75]: df.to_csv('foo.csv').execute()
Out[75]: 
Empty DataFrame
Columns: []
Index: []

Reading from a csv file.

In [76]: md.read_csv('foo.csv').execute()
Out[76]: 
     Unnamed: 0          A          B          C          D
0    2000-01-01   0.246690   1.152843   0.234475  -0.889559
1    2000-01-02  -0.941188   1.111507   0.109133  -0.315961
2    2000-01-03  -0.617940  -0.779686  -0.881437   0.040979
3    2000-01-04   1.309464   0.728078  -0.858242  -0.543386
4    2000-01-05   2.128311   1.187034  -0.564888  -0.892389
..          ...        ...        ...        ...        ...
995  2002-09-22 -66.341967  20.184272  17.355185 -18.027189
996  2002-09-23 -67.497541  18.068704  17.983740 -16.897568
997  2002-09-24 -66.083148  17.323924  17.033433 -18.309645
998  2002-09-25 -66.039451  16.938180  17.921725 -17.824954
999  2002-09-26 -66.191765  15.703785  16.922038 -19.037078

[1000 rows x 5 columns]