10 minutes to Mars DataFrame

This is a short introduction to Mars DataFrame which is originated from 10 minutes to pandas.

Customarily, we import as follows:

In [1]: import mars.tensor as mt

In [2]: import mars.dataframe as md

Object creation

Creating a Series by passing a list of values, letting it create a default integer index:

In [3]: s = md.Series([1, 3, 5, mt.nan, 6, 8])

In [4]: s.execute()
Out[4]: 
0    1.0
1    3.0
2    5.0
3    NaN
4    6.0
5    8.0
dtype: float64

Creating a DataFrame by passing a Mars tensor, with a datetime index and labeled columns:

In [5]: dates = md.date_range('20130101', periods=6)

In [6]: dates.execute()
Out[6]: 
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
               '2013-01-05', '2013-01-06'],
              dtype='datetime64[ns]', freq='D')

In [7]: df = md.DataFrame(mt.random.randn(6, 4), index=dates, columns=list('ABCD'))

In [8]: df.execute()
Out[8]: 
                   A         B         C         D
2013-01-01  0.039785 -0.188372  0.904168  1.838516
2013-01-02  0.393376 -1.220780 -1.070819  0.637269
2013-01-03  1.128161 -0.379367  0.273642 -0.398398
2013-01-04 -0.280203 -0.637178 -1.694790  1.355583
2013-01-05  0.802582 -0.069426 -1.038865 -0.113133
2013-01-06 -0.463181 -1.052488  1.263121 -0.315807

Creating a DataFrame by passing a dict of objects that can be converted to series-like.

In [9]: df2 = md.DataFrame({'A': 1.,
   ...:                     'B': md.Timestamp('20130102'),
   ...:                     'C': md.Series(1, index=list(range(4)), dtype='float32'),
   ...:                     'D': mt.array([3] * 4, dtype='int32'),
   ...:                     'E': 'foo'})
   ...: 

In [10]: df2.execute()
Out[10]: 
     A          B    C  D    E
0  1.0 2013-01-02  1.0  3  foo
1  1.0 2013-01-02  1.0  3  foo
2  1.0 2013-01-02  1.0  3  foo
3  1.0 2013-01-02  1.0  3  foo

The columns of the resulting DataFrame have different dtypes.

In [11]: df2.dtypes
Out[11]: 
A           float64
B    datetime64[ns]
C           float32
D             int32
E            object
dtype: object

Viewing data

Here is how to view the top and bottom rows of the frame:

In [12]: df.head().execute()
Out[12]: 
                   A         B         C         D
2013-01-01  0.039785 -0.188372  0.904168  1.838516
2013-01-02  0.393376 -1.220780 -1.070819  0.637269
2013-01-03  1.128161 -0.379367  0.273642 -0.398398
2013-01-04 -0.280203 -0.637178 -1.694790  1.355583
2013-01-05  0.802582 -0.069426 -1.038865 -0.113133

In [13]: df.tail(3).execute()
Out[13]: 
                   A         B         C         D
2013-01-04 -0.280203 -0.637178 -1.694790  1.355583
2013-01-05  0.802582 -0.069426 -1.038865 -0.113133
2013-01-06 -0.463181 -1.052488  1.263121 -0.315807

Display the index, columns:

In [14]: df.index.execute()
Out[14]: 
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
               '2013-01-05', '2013-01-06'],
              dtype='datetime64[ns]', freq='D')

In [15]: df.columns.execute()
Out[15]: Index(['A', 'B', 'C', 'D'], dtype='object')

DataFrame.to_tensor() gives a Mars tensor representation of the underlying data. Note that this can be an expensive operation when your DataFrame has columns with different data types, which comes down to a fundamental difference between DataFrame and tensor: tensors have one dtype for the entire tensor, while DataFrames have one dtype per column. When you call DataFrame.to_tensor(), Mars DataFrame will find the tensor dtype that can hold all of the dtypes in the DataFrame. This may end up being object, which requires casting every value to a Python object.

For df, our DataFrame of all floating-point values, DataFrame.to_tensor() is fast and doesn’t require copying data.

In [16]: df.to_tensor().execute()
Out[16]: 
array([[ 0.03978516, -0.18837215,  0.9041681 ,  1.83851562],
       [ 0.3933763 , -1.22078023, -1.07081854,  0.63726925],
       [ 1.12816132, -0.37936728,  0.27364242, -0.39839815],
       [-0.2802029 , -0.63717819, -1.69478977,  1.35558251],
       [ 0.80258183, -0.06942621, -1.03886539, -0.11313261],
       [-0.46318118, -1.05248845,  1.26312122, -0.31580712]])

For df2, the DataFrame with multiple dtypes, DataFrame.to_tensor() is relatively expensive.

In [17]: df2.to_tensor().execute()
Out[17]: 
array([[1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo'],
       [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo'],
       [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo'],
       [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo']],
      dtype=object)

Note

DataFrame.to_tensor() does not include the index or column labels in the output.

describe() shows a quick statistic summary of your data:

In [18]: df.describe().execute()
Out[18]: 
              A         B         C         D
count  6.000000  6.000000  6.000000  6.000000
mean   0.270087 -0.591269 -0.227257  0.500672
std    0.621061  0.467047  1.206334  0.937132
min   -0.463181 -1.220780 -1.694790 -0.398398
25%   -0.200206 -0.948661 -1.062830 -0.265138
50%    0.216581 -0.508273 -0.382611  0.262068
75%    0.700280 -0.236121  0.746537  1.176004
max    1.128161 -0.069426  1.263121  1.838516

Sorting by an axis:

In [19]: df.sort_index(axis=1, ascending=False).execute()
Out[19]: 
                   D         C         B         A
2013-01-01  1.838516  0.904168 -0.188372  0.039785
2013-01-02  0.637269 -1.070819 -1.220780  0.393376
2013-01-03 -0.398398  0.273642 -0.379367  1.128161
2013-01-04  1.355583 -1.694790 -0.637178 -0.280203
2013-01-05 -0.113133 -1.038865 -0.069426  0.802582
2013-01-06 -0.315807  1.263121 -1.052488 -0.463181

Sorting by values:

In [20]: df.sort_values(by='B').execute()
Out[20]: 
                   A         B         C         D
2013-01-02  0.393376 -1.220780 -1.070819  0.637269
2013-01-06 -0.463181 -1.052488  1.263121 -0.315807
2013-01-04 -0.280203 -0.637178 -1.694790  1.355583
2013-01-03  1.128161 -0.379367  0.273642 -0.398398
2013-01-01  0.039785 -0.188372  0.904168  1.838516
2013-01-05  0.802582 -0.069426 -1.038865 -0.113133

Selection

Note

While standard Python / Numpy expressions for selecting and setting are intuitive and come in handy for interactive work, for production code, we recommend the optimized DataFrame data access methods, .at, .iat, .loc and .iloc.

Getting

Selecting a single column, which yields a Series, equivalent to df.A:

In [21]: df['A'].execute()
Out[21]: 
2013-01-01    0.039785
2013-01-02    0.393376
2013-01-03    1.128161
2013-01-04   -0.280203
2013-01-05    0.802582
2013-01-06   -0.463181
Freq: D, Name: A, dtype: float64

Selecting via [], which slices the rows.

In [22]: df[0:3].execute()
Out[22]: 
                   A         B         C         D
2013-01-01  0.039785 -0.188372  0.904168  1.838516
2013-01-02  0.393376 -1.220780 -1.070819  0.637269
2013-01-03  1.128161 -0.379367  0.273642 -0.398398

In [23]: df['20130102':'20130104'].execute()
Out[23]: 
                   A         B         C         D
2013-01-02  0.393376 -1.220780 -1.070819  0.637269
2013-01-03  1.128161 -0.379367  0.273642 -0.398398
2013-01-04 -0.280203 -0.637178 -1.694790  1.355583

Selection by label

For getting a cross section using a label:

In [24]: df.loc['20130101'].execute()
Out[24]: 
A    0.039785
B   -0.188372
C    0.904168
D    1.838516
Name: 2013-01-01 00:00:00, dtype: float64

Selecting on a multi-axis by label:

In [25]: df.loc[:, ['A', 'B']].execute()
Out[25]: 
                   A         B
2013-01-01  0.039785 -0.188372
2013-01-02  0.393376 -1.220780
2013-01-03  1.128161 -0.379367
2013-01-04 -0.280203 -0.637178
2013-01-05  0.802582 -0.069426
2013-01-06 -0.463181 -1.052488

Showing label slicing, both endpoints are included:

In [26]: df.loc['20130102':'20130104', ['A', 'B']].execute()
Out[26]: 
                   A         B
2013-01-02  0.393376 -1.220780
2013-01-03  1.128161 -0.379367
2013-01-04 -0.280203 -0.637178

Reduction in the dimensions of the returned object:

In [27]: df.loc['20130102', ['A', 'B']].execute()
Out[27]: 
A    0.393376
B   -1.220780
Name: 2013-01-02 00:00:00, dtype: float64

For getting a scalar value:

In [28]: df.loc['20130101', 'A'].execute()
Out[28]: 0.03978515801199635

For getting fast access to a scalar (equivalent to the prior method):

In [29]: df.at['20130101', 'A'].execute()
Out[29]: 0.03978515801199635

Selection by position

Select via the position of the passed integers:

In [30]: df.iloc[3].execute()
Out[30]: 
A   -0.280203
B   -0.637178
C   -1.694790
D    1.355583
Name: 2013-01-04 00:00:00, dtype: float64

By integer slices, acting similar to numpy/python:

In [31]: df.iloc[3:5, 0:2].execute()
Out[31]: 
                   A         B
2013-01-04 -0.280203 -0.637178
2013-01-05  0.802582 -0.069426

By lists of integer position locations, similar to the numpy/python style:

In [32]: df.iloc[[1, 2, 4], [0, 2]].execute()
Out[32]: 
                   A         C
2013-01-02  0.393376 -1.070819
2013-01-03  1.128161  0.273642
2013-01-05  0.802582 -1.038865

For slicing rows explicitly:

In [33]: df.iloc[1:3, :].execute()
Out[33]: 
                   A         B         C         D
2013-01-02  0.393376 -1.220780 -1.070819  0.637269
2013-01-03  1.128161 -0.379367  0.273642 -0.398398

For slicing columns explicitly:

In [34]: df.iloc[:, 1:3].execute()
Out[34]: 
                   B         C
2013-01-01 -0.188372  0.904168
2013-01-02 -1.220780 -1.070819
2013-01-03 -0.379367  0.273642
2013-01-04 -0.637178 -1.694790
2013-01-05 -0.069426 -1.038865
2013-01-06 -1.052488  1.263121

For getting a value explicitly:

In [35]: df.iloc[1, 1].execute()
Out[35]: -1.220780230100412

For getting fast access to a scalar (equivalent to the prior method):

In [36]: df.iat[1, 1].execute()
Out[36]: -1.220780230100412

Boolean indexing

Using a single column’s values to select data.

In [37]: df[df['A'] > 0].execute()
Out[37]: 
                   A         B         C         D
2013-01-01  0.039785 -0.188372  0.904168  1.838516
2013-01-02  0.393376 -1.220780 -1.070819  0.637269
2013-01-03  1.128161 -0.379367  0.273642 -0.398398
2013-01-05  0.802582 -0.069426 -1.038865 -0.113133

Selecting values from a DataFrame where a boolean condition is met.

In [38]: df[df > 0].execute()
Out[38]: 
                   A   B         C         D
2013-01-01  0.039785 NaN  0.904168  1.838516
2013-01-02  0.393376 NaN       NaN  0.637269
2013-01-03  1.128161 NaN  0.273642       NaN
2013-01-04       NaN NaN       NaN  1.355583
2013-01-05  0.802582 NaN       NaN       NaN
2013-01-06       NaN NaN  1.263121       NaN

Operations

Stats

Operations in general exclude missing data.

Performing a descriptive statistic:

In [39]: df.mean().execute()
Out[39]: 
A    0.270087
B   -0.591269
C   -0.227257
D    0.500672
dtype: float64

Same operation on the other axis:

In [40]: df.mean(1).execute()
Out[40]: 
2013-01-01    0.648524
2013-01-02   -0.315238
2013-01-03    0.156010
2013-01-04   -0.314147
2013-01-05   -0.104711
2013-01-06   -0.142089
Freq: D, dtype: float64

Operating with objects that have different dimensionality and need alignment. In addition, Mars DataFrame automatically broadcasts along the specified dimension.

In [41]: s = md.Series([1, 3, 5, mt.nan, 6, 8], index=dates).shift(2)

In [42]: s.execute()
Out[42]: 
2013-01-01    NaN
2013-01-02    NaN
2013-01-03    1.0
2013-01-04    3.0
2013-01-05    5.0
2013-01-06    NaN
Freq: D, dtype: float64

In [43]: df.sub(s, axis='index').execute()
Out[43]: 
                   A         B         C         D
2013-01-01       NaN       NaN       NaN       NaN
2013-01-02       NaN       NaN       NaN       NaN
2013-01-03  0.128161 -1.379367 -0.726358 -1.398398
2013-01-04 -3.280203 -3.637178 -4.694790 -1.644417
2013-01-05 -4.197418 -5.069426 -6.038865 -5.113133
2013-01-06       NaN       NaN       NaN       NaN

Apply

Applying functions to the data:

In [44]: df.apply(lambda x: x.max() - x.min()).execute()
Out[44]: 
A    1.591342
B    1.151354
C    2.957911
D    2.236914
dtype: float64

String Methods

Series is equipped with a set of string processing methods in the str attribute that make it easy to operate on each element of the array, as in the code snippet below. Note that pattern-matching in str generally uses regular expressions by default (and in some cases always uses them). See more at Vectorized String Methods.

In [45]: s = md.Series(['A', 'B', 'C', 'Aaba', 'Baca', mt.nan, 'CABA', 'dog', 'cat'])

In [46]: s.str.lower().execute()
Out[46]: 
0       a
1       b
2       c
3    aaba
4    baca
5     NaN
6    caba
7     dog
8     cat
dtype: object

Merge

Concat

Mars DataFrame provides various facilities for easily combining together Series and DataFrame objects with various kinds of set logic for the indexes and relational algebra functionality in the case of join / merge-type operations.

Concatenating DataFrame objects together with concat():

In [47]: df = md.DataFrame(mt.random.randn(10, 4))

In [48]: df.execute()
Out[48]: 
          0         1         2         3
0  2.147445 -0.067953 -1.679181 -0.833653
1  1.980446 -1.776451 -1.585992 -0.490787
2  0.001157  2.535161  1.517359  0.358273
3  0.219983 -0.051507 -1.095765 -0.772121
4  0.621682 -1.272987  0.388516 -0.955901
5 -0.491198 -0.363230 -0.381387 -0.201356
6 -0.689568  0.166605  1.171567  0.066894
7 -0.486833 -1.077018 -0.282597  2.046952
8  0.090990 -2.081635 -2.079520  0.286736
9  1.580950 -1.092175  0.067889 -1.280085

# break it into pieces
In [49]: pieces = [df[:3], df[3:7], df[7:]]

In [50]: md.concat(pieces).execute()
Out[50]: 
          0         1         2         3
0  2.147445 -0.067953 -1.679181 -0.833653
1  1.980446 -1.776451 -1.585992 -0.490787
2  0.001157  2.535161  1.517359  0.358273
3  0.219983 -0.051507 -1.095765 -0.772121
4  0.621682 -1.272987  0.388516 -0.955901
5 -0.491198 -0.363230 -0.381387 -0.201356
6 -0.689568  0.166605  1.171567  0.066894
7 -0.486833 -1.077018 -0.282597  2.046952
8  0.090990 -2.081635 -2.079520  0.286736
9  1.580950 -1.092175  0.067889 -1.280085

Note

Adding a column to a DataFrame is relatively fast. However, adding a row requires a copy, and may be expensive. We recommend passing a pre-built list of records to the DataFrame constructor instead of building a DataFrame by iteratively appending records to it.

Join

SQL style merges. See the Database style joining section.

In [51]: left = md.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]})

In [52]: right = md.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]})

In [53]: left.execute()
Out[53]: 
   key  lval
0  foo     1
1  foo     2

In [54]: right.execute()
Out[54]: 
   key  rval
0  foo     4
1  foo     5

In [55]: md.merge(left, right, on='key').execute()
Out[55]: 
   key  lval  rval
0  foo     1     4
1  foo     1     5
2  foo     2     4
3  foo     2     5

Another example that can be given is:

In [56]: left = md.DataFrame({'key': ['foo', 'bar'], 'lval': [1, 2]})

In [57]: right = md.DataFrame({'key': ['foo', 'bar'], 'rval': [4, 5]})

In [58]: left.execute()
Out[58]: 
   key  lval
0  foo     1
1  bar     2

In [59]: right.execute()
Out[59]: 
   key  rval
0  foo     4
1  bar     5

In [60]: md.merge(left, right, on='key').execute()
Out[60]: 
   key  lval  rval
0  foo     1     4
1  bar     2     5

Grouping

By “group by” we are referring to a process involving one or more of the following steps:

  • Splitting the data into groups based on some criteria

  • Applying a function to each group independently

  • Combining the results into a data structure

In [61]: df = md.DataFrame({'A': ['foo', 'bar', 'foo', 'bar',
   ....:                          'foo', 'bar', 'foo', 'foo'],
   ....:                    'B': ['one', 'one', 'two', 'three',
   ....:                          'two', 'two', 'one', 'three'],
   ....:                    'C': mt.random.randn(8),
   ....:                    'D': mt.random.randn(8)})
   ....: 

In [62]: df.execute()
Out[62]: 
     A      B         C         D
0  foo    one -0.934587 -1.395785
1  bar    one -0.931728 -1.355472
2  foo    two -0.615953 -0.502464
3  bar  three -0.799975 -0.118434
4  foo    two -1.313550 -0.277331
5  bar    two -1.163293  1.032541
6  foo    one -0.428732 -0.961337
7  foo  three  0.322676 -0.547266

Grouping and then applying the sum() function to the resulting groups.

In [63]: df.groupby('A').sum().execute()
Out[63]: 
            C         D
A                      
bar -2.894996 -0.441365
foo -2.970146 -3.684182

Grouping by multiple columns forms a hierarchical index, and again we can apply the sum function.

In [64]: df.groupby(['A', 'B']).sum().execute()
Out[64]: 
                  C         D
A   B                        
foo one   -1.363318 -2.357121
    two   -1.929504 -0.779795
    three  0.322676 -0.547266
bar one   -0.931728 -1.355472
    two   -1.163293  1.032541
    three -0.799975 -0.118434

Plotting

We use the standard convention for referencing the matplotlib API:

In [65]: import matplotlib.pyplot as plt

In [66]: plt.close('all')
In [67]: ts = md.Series(mt.random.randn(1000),
   ....:                index=md.date_range('1/1/2000', periods=1000))
   ....: 

In [68]: ts = ts.cumsum()

In [69]: ts.plot()
Out[69]: <AxesSubplot:>
../../_images/series_plot_basic.png

On a DataFrame, the plot() method is a convenience to plot all of the columns with labels:

In [70]: df = md.DataFrame(mt.random.randn(1000, 4), index=ts.index,
   ....:                   columns=['A', 'B', 'C', 'D'])
   ....: 

In [71]: df = df.cumsum()

In [72]: plt.figure()
Out[72]: <Figure size 640x480 with 0 Axes>

In [73]: df.plot()
Out[73]: <AxesSubplot:>

In [74]: plt.legend(loc='best')
Out[74]: <matplotlib.legend.Legend at 0x7f1167d90a90>
../../_images/frame_plot_basic.png

Getting data in/out

CSV

In [75]: df.to_csv('foo.csv').execute()
Out[75]: 
Empty DataFrame
Columns: []
Index: []

Reading from a csv file.

In [76]: md.read_csv('foo.csv').execute()
Out[76]: 
     Unnamed: 0          A          B          C          D
0    2000-01-01  -2.014476  -2.824053  -1.321149  -0.684440
1    2000-01-02  -1.555855  -4.000812  -1.349740  -1.011120
2    2000-01-03  -1.195056  -4.587659  -1.292865  -2.405421
3    2000-01-04   0.172848  -4.773932  -0.357737  -3.259702
4    2000-01-05   0.964374  -5.163434  -0.267826  -3.208199
..          ...        ...        ...        ...        ...
995  2002-09-22  17.183405   8.268086 -17.790193 -24.465205
996  2002-09-23  16.256185   6.922495 -17.098417 -24.966699
997  2002-09-24  17.065281   9.225703 -17.167156 -25.026606
998  2002-09-25  18.037321   9.468116 -16.718285 -22.451462
999  2002-09-26  19.692603  10.528481 -16.154121 -21.879568

[1000 rows x 5 columns]