10 minutes to Mars DataFrame

This is a short introduction to Mars DataFrame which is originated from 10 minutes to pandas.

Customarily, we import as follows:

In [1]: import mars.tensor as mt

In [2]: import mars.dataframe as md

Object creation

Creating a Series by passing a list of values, letting it create a default integer index:

In [3]: s = md.Series([1, 3, 5, mt.nan, 6, 8])

In [4]: s.execute()
Out[4]: 
0    1.0
1    3.0
2    5.0
3    NaN
4    6.0
5    8.0
dtype: float64

Creating a DataFrame by passing a Mars tensor, with a datetime index and labeled columns:

In [5]: dates = md.date_range('20130101', periods=6)

In [6]: dates.execute()
Out[6]: 
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
               '2013-01-05', '2013-01-06'],
              dtype='datetime64[ns]', freq='D')

In [7]: df = md.DataFrame(mt.random.randn(6, 4), index=dates, columns=list('ABCD'))

In [8]: df.execute()
Out[8]: 
                   A         B         C         D
2013-01-01 -0.102617  0.281239  0.765845 -1.721473
2013-01-02  1.286225 -1.990426 -0.470803 -1.370609
2013-01-03 -1.291403 -0.115962 -0.897020 -1.676863
2013-01-04 -0.681588  0.945126  0.070495 -0.584050
2013-01-05 -2.483265  0.080008  1.008448 -0.064077
2013-01-06  1.442641  0.292922  1.195201  2.459135

Creating a DataFrame by passing a dict of objects that can be converted to series-like.

In [9]: df2 = md.DataFrame({'A': 1.,
   ...:                     'B': md.Timestamp('20130102'),
   ...:                     'C': md.Series(1, index=list(range(4)), dtype='float32'),
   ...:                     'D': mt.array([3] * 4, dtype='int32'),
   ...:                     'E': 'foo'})
   ...: 

In [10]: df2.execute()
Out[10]: 
     A          B    C  D    E
0  1.0 2013-01-02  1.0  3  foo
1  1.0 2013-01-02  1.0  3  foo
2  1.0 2013-01-02  1.0  3  foo
3  1.0 2013-01-02  1.0  3  foo

The columns of the resulting DataFrame have different dtypes.

In [11]: df2.dtypes
Out[11]: 
A           float64
B    datetime64[ns]
C           float32
D             int32
E            object
dtype: object

Viewing data

Here is how to view the top and bottom rows of the frame:

In [12]: df.head().execute()
Out[12]: 
                   A         B         C         D
2013-01-01 -0.102617  0.281239  0.765845 -1.721473
2013-01-02  1.286225 -1.990426 -0.470803 -1.370609
2013-01-03 -1.291403 -0.115962 -0.897020 -1.676863
2013-01-04 -0.681588  0.945126  0.070495 -0.584050
2013-01-05 -2.483265  0.080008  1.008448 -0.064077

In [13]: df.tail(3).execute()
Out[13]: 
                   A         B         C         D
2013-01-04 -0.681588  0.945126  0.070495 -0.584050
2013-01-05 -2.483265  0.080008  1.008448 -0.064077
2013-01-06  1.442641  0.292922  1.195201  2.459135

Display the index, columns:

In [14]: df.index.execute()
Out[14]: 
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
               '2013-01-05', '2013-01-06'],
              dtype='datetime64[ns]', freq='D')

In [15]: df.columns.execute()
Out[15]: Index(['A', 'B', 'C', 'D'], dtype='object')

DataFrame.to_tensor() gives a Mars tensor representation of the underlying data. Note that this can be an expensive operation when your DataFrame has columns with different data types, which comes down to a fundamental difference between DataFrame and tensor: tensors have one dtype for the entire tensor, while DataFrames have one dtype per column. When you call DataFrame.to_tensor(), Mars DataFrame will find the tensor dtype that can hold all of the dtypes in the DataFrame. This may end up being object, which requires casting every value to a Python object.

For df, our DataFrame of all floating-point values, DataFrame.to_tensor() is fast and doesn’t require copying data.

In [16]: df.to_tensor().execute()
Out[16]: 
array([[-0.10261746,  0.28123899,  0.76584499, -1.72147292],
       [ 1.28622519, -1.99042578, -0.47080276, -1.37060858],
       [-1.2914031 , -0.11596179, -0.89701989, -1.67686266],
       [-0.6815878 ,  0.94512634,  0.07049495, -0.58404984],
       [-2.48326497,  0.08000753,  1.00844776, -0.06407699],
       [ 1.44264056,  0.29292199,  1.1952013 ,  2.4591348 ]])

For df2, the DataFrame with multiple dtypes, DataFrame.to_tensor() is relatively expensive.

In [17]: df2.to_tensor().execute()
Out[17]: 
array([[1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo'],
       [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo'],
       [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo'],
       [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo']],
      dtype=object)

Note

DataFrame.to_tensor() does not include the index or column labels in the output.

describe() shows a quick statistic summary of your data:

In [18]: df.describe().execute()
Out[18]: 
              A         B         C         D
count  6.000000  6.000000  6.000000  6.000000
mean  -0.305001 -0.084515  0.278694 -0.492989
std    1.515708  0.999695  0.848203  1.586710
min   -2.483265 -1.990426 -0.897020 -1.721473
25%   -1.138949 -0.066969 -0.335478 -1.600299
50%   -0.392103  0.180623  0.418170 -0.977329
75%    0.939015  0.290001  0.947797 -0.194070
max    1.442641  0.945126  1.195201  2.459135

Sorting by an axis:

In [19]: df.sort_index(axis=1, ascending=False).execute()
Out[19]: 
                   D         C         B         A
2013-01-01 -1.721473  0.765845  0.281239 -0.102617
2013-01-02 -1.370609 -0.470803 -1.990426  1.286225
2013-01-03 -1.676863 -0.897020 -0.115962 -1.291403
2013-01-04 -0.584050  0.070495  0.945126 -0.681588
2013-01-05 -0.064077  1.008448  0.080008 -2.483265
2013-01-06  2.459135  1.195201  0.292922  1.442641

Sorting by values:

In [20]: df.sort_values(by='B').execute()
Out[20]: 
                   A         B         C         D
2013-01-02  1.286225 -1.990426 -0.470803 -1.370609
2013-01-03 -1.291403 -0.115962 -0.897020 -1.676863
2013-01-05 -2.483265  0.080008  1.008448 -0.064077
2013-01-01 -0.102617  0.281239  0.765845 -1.721473
2013-01-06  1.442641  0.292922  1.195201  2.459135
2013-01-04 -0.681588  0.945126  0.070495 -0.584050

Selection

Note

While standard Python / Numpy expressions for selecting and setting are intuitive and come in handy for interactive work, for production code, we recommend the optimized DataFrame data access methods, .at, .iat, .loc and .iloc.

Getting

Selecting a single column, which yields a Series, equivalent to df.A:

In [21]: df['A'].execute()
Out[21]: 
2013-01-01   -0.102617
2013-01-02    1.286225
2013-01-03   -1.291403
2013-01-04   -0.681588
2013-01-05   -2.483265
2013-01-06    1.442641
Freq: D, Name: A, dtype: float64

Selecting via [], which slices the rows.

In [22]: df[0:3].execute()
Out[22]: 
                   A         B         C         D
2013-01-01 -0.102617  0.281239  0.765845 -1.721473
2013-01-02  1.286225 -1.990426 -0.470803 -1.370609
2013-01-03 -1.291403 -0.115962 -0.897020 -1.676863

In [23]: df['20130102':'20130104'].execute()
Out[23]: 
                   A         B         C         D
2013-01-02  1.286225 -1.990426 -0.470803 -1.370609
2013-01-03 -1.291403 -0.115962 -0.897020 -1.676863
2013-01-04 -0.681588  0.945126  0.070495 -0.584050

Selection by label

For getting a cross section using a label:

In [24]: df.loc['20130101'].execute()
Out[24]: 
A   -0.102617
B    0.281239
C    0.765845
D   -1.721473
Name: 2013-01-01 00:00:00, dtype: float64

Selecting on a multi-axis by label:

In [25]: df.loc[:, ['A', 'B']].execute()
Out[25]: 
                   A         B
2013-01-01 -0.102617  0.281239
2013-01-02  1.286225 -1.990426
2013-01-03 -1.291403 -0.115962
2013-01-04 -0.681588  0.945126
2013-01-05 -2.483265  0.080008
2013-01-06  1.442641  0.292922

Showing label slicing, both endpoints are included:

In [26]: df.loc['20130102':'20130104', ['A', 'B']].execute()
Out[26]: 
                   A         B
2013-01-02  1.286225 -1.990426
2013-01-03 -1.291403 -0.115962
2013-01-04 -0.681588  0.945126

Reduction in the dimensions of the returned object:

In [27]: df.loc['20130102', ['A', 'B']].execute()
Out[27]: 
A    1.286225
B   -1.990426
Name: 2013-01-02 00:00:00, dtype: float64

For getting a scalar value:

In [28]: df.loc['20130101', 'A'].execute()
Out[28]: -0.10261745872880973

For getting fast access to a scalar (equivalent to the prior method):

In [29]: df.at['20130101', 'A'].execute()
Out[29]: -0.10261745872880973

Selection by position

Select via the position of the passed integers:

In [30]: df.iloc[3].execute()
Out[30]: 
A   -0.681588
B    0.945126
C    0.070495
D   -0.584050
Name: 2013-01-04 00:00:00, dtype: float64

By integer slices, acting similar to numpy/python:

In [31]: df.iloc[3:5, 0:2].execute()
Out[31]: 
                   A         B
2013-01-04 -0.681588  0.945126
2013-01-05 -2.483265  0.080008

By lists of integer position locations, similar to the numpy/python style:

In [32]: df.iloc[[1, 2, 4], [0, 2]].execute()
Out[32]: 
                   A         C
2013-01-02  1.286225 -0.470803
2013-01-03 -1.291403 -0.897020
2013-01-05 -2.483265  1.008448

For slicing rows explicitly:

In [33]: df.iloc[1:3, :].execute()
Out[33]: 
                   A         B         C         D
2013-01-02  1.286225 -1.990426 -0.470803 -1.370609
2013-01-03 -1.291403 -0.115962 -0.897020 -1.676863

For slicing columns explicitly:

In [34]: df.iloc[:, 1:3].execute()
Out[34]: 
                   B         C
2013-01-01  0.281239  0.765845
2013-01-02 -1.990426 -0.470803
2013-01-03 -0.115962 -0.897020
2013-01-04  0.945126  0.070495
2013-01-05  0.080008  1.008448
2013-01-06  0.292922  1.195201

For getting a value explicitly:

In [35]: df.iloc[1, 1].execute()
Out[35]: -1.99042577688373

For getting fast access to a scalar (equivalent to the prior method):

In [36]: df.iat[1, 1].execute()
Out[36]: -1.99042577688373

Boolean indexing

Using a single column’s values to select data.

In [37]: df[df['A'] > 0].execute()
Out[37]: 
                   A         B         C         D
2013-01-02  1.286225 -1.990426 -0.470803 -1.370609
2013-01-06  1.442641  0.292922  1.195201  2.459135

Selecting values from a DataFrame where a boolean condition is met.

In [38]: df[df > 0].execute()
Out[38]: 
                   A         B         C         D
2013-01-01       NaN  0.281239  0.765845       NaN
2013-01-02  1.286225       NaN       NaN       NaN
2013-01-03       NaN       NaN       NaN       NaN
2013-01-04       NaN  0.945126  0.070495       NaN
2013-01-05       NaN  0.080008  1.008448       NaN
2013-01-06  1.442641  0.292922  1.195201  2.459135

Operations

Stats

Operations in general exclude missing data.

Performing a descriptive statistic:

In [39]: df.mean().execute()
Out[39]: 
A   -0.305001
B   -0.084515
C    0.278694
D   -0.492989
dtype: float64

Same operation on the other axis:

In [40]: df.mean(1).execute()
Out[40]: 
2013-01-01   -0.194252
2013-01-02   -0.636403
2013-01-03   -0.995312
2013-01-04   -0.062504
2013-01-05   -0.364722
2013-01-06    1.347475
Freq: D, dtype: float64

Operating with objects that have different dimensionality and need alignment. In addition, Mars DataFrame automatically broadcasts along the specified dimension.

In [41]: s = md.Series([1, 3, 5, mt.nan, 6, 8], index=dates).shift(2)

In [42]: s.execute()
Out[42]: 
2013-01-01    NaN
2013-01-02    NaN
2013-01-03    1.0
2013-01-04    3.0
2013-01-05    5.0
2013-01-06    NaN
Freq: D, dtype: float64

In [43]: df.sub(s, axis='index').execute()
Out[43]: 
                   A         B         C         D
2013-01-01       NaN       NaN       NaN       NaN
2013-01-02       NaN       NaN       NaN       NaN
2013-01-03 -2.291403 -1.115962 -1.897020 -2.676863
2013-01-04 -3.681588 -2.054874 -2.929505 -3.584050
2013-01-05 -7.483265 -4.919992 -3.991552 -5.064077
2013-01-06       NaN       NaN       NaN       NaN

Apply

Applying functions to the data:

In [44]: df.apply(lambda x: x.max() - x.min()).execute()
Out[44]: 
A    3.925906
B    2.935552
C    2.092221
D    4.180608
dtype: float64

String Methods

Series is equipped with a set of string processing methods in the str attribute that make it easy to operate on each element of the array, as in the code snippet below. Note that pattern-matching in str generally uses regular expressions by default (and in some cases always uses them). See more at Vectorized String Methods.

In [45]: s = md.Series(['A', 'B', 'C', 'Aaba', 'Baca', mt.nan, 'CABA', 'dog', 'cat'])

In [46]: s.str.lower().execute()
Out[46]: 
0       a
1       b
2       c
3    aaba
4    baca
5     NaN
6    caba
7     dog
8     cat
dtype: object

Merge

Concat

Mars DataFrame provides various facilities for easily combining together Series and DataFrame objects with various kinds of set logic for the indexes and relational algebra functionality in the case of join / merge-type operations.

Concatenating DataFrame objects together with concat():

In [47]: df = md.DataFrame(mt.random.randn(10, 4))

In [48]: df.execute()
Out[48]: 
          0         1         2         3
0 -0.958207 -0.944926  0.898935 -0.070548
1 -0.218734  0.395159  1.184165 -0.381167
2  0.417184 -0.685930  0.959486 -0.565428
3  0.322161 -0.391164 -2.023050 -0.478529
4  0.342213  1.477304  1.155072  1.018949
5  0.923782  1.829053 -0.682229 -0.862974
6 -0.838076 -0.516523  1.094508  0.106442
7  0.399551  0.722962  1.054487 -0.220905
8 -0.463069  0.227922 -0.001813  1.743965
9  0.997896 -1.212283  1.831018 -0.211352

# break it into pieces
In [49]: pieces = [df[:3], df[3:7], df[7:]]

In [50]: md.concat(pieces).execute()
Out[50]: 
          0         1         2         3
0 -0.958207 -0.944926  0.898935 -0.070548
1 -0.218734  0.395159  1.184165 -0.381167
2  0.417184 -0.685930  0.959486 -0.565428
3  0.322161 -0.391164 -2.023050 -0.478529
4  0.342213  1.477304  1.155072  1.018949
5  0.923782  1.829053 -0.682229 -0.862974
6 -0.838076 -0.516523  1.094508  0.106442
7  0.399551  0.722962  1.054487 -0.220905
8 -0.463069  0.227922 -0.001813  1.743965
9  0.997896 -1.212283  1.831018 -0.211352

Note

Adding a column to a DataFrame is relatively fast. However, adding a row requires a copy, and may be expensive. We recommend passing a pre-built list of records to the DataFrame constructor instead of building a DataFrame by iteratively appending records to it.

Join

SQL style merges. See the Database style joining section.

In [51]: left = md.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]})

In [52]: right = md.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]})

In [53]: left.execute()
Out[53]: 
   key  lval
0  foo     1
1  foo     2

In [54]: right.execute()
Out[54]: 
   key  rval
0  foo     4
1  foo     5

In [55]: md.merge(left, right, on='key').execute()
Out[55]: 
   key  lval  rval
0  foo     1     4
1  foo     1     5
2  foo     2     4
3  foo     2     5

Another example that can be given is:

In [56]: left = md.DataFrame({'key': ['foo', 'bar'], 'lval': [1, 2]})

In [57]: right = md.DataFrame({'key': ['foo', 'bar'], 'rval': [4, 5]})

In [58]: left.execute()
Out[58]: 
   key  lval
0  foo     1
1  bar     2

In [59]: right.execute()
Out[59]: 
   key  rval
0  foo     4
1  bar     5

In [60]: md.merge(left, right, on='key').execute()
Out[60]: 
   key  lval  rval
0  foo     1     4
1  bar     2     5

Grouping

By “group by” we are referring to a process involving one or more of the following steps:

  • Splitting the data into groups based on some criteria

  • Applying a function to each group independently

  • Combining the results into a data structure

In [61]: df = md.DataFrame({'A': ['foo', 'bar', 'foo', 'bar',
   ....:                          'foo', 'bar', 'foo', 'foo'],
   ....:                    'B': ['one', 'one', 'two', 'three',
   ....:                          'two', 'two', 'one', 'three'],
   ....:                    'C': mt.random.randn(8),
   ....:                    'D': mt.random.randn(8)})
   ....: 

In [62]: df.execute()
Out[62]: 
     A      B         C         D
0  foo    one  0.144543  0.326850
1  bar    one -0.182791  0.034401
2  foo    two -1.492649  0.303493
3  bar  three -0.215409  1.034241
4  foo    two  0.491883  1.063304
5  bar    two  0.618155  1.569673
6  foo    one -1.562122  0.432408
7  foo  three -0.690482  0.207695

Grouping and then applying the sum() function to the resulting groups.

In [63]: df.groupby('A').sum().execute()
Out[63]: 
            C         D
A                      
bar  0.219955  2.638315
foo -3.108828  2.333749

Grouping by multiple columns forms a hierarchical index, and again we can apply the sum function.

In [64]: df.groupby(['A', 'B']).sum().execute()
Out[64]: 
                  C         D
A   B                        
foo one   -1.417579  0.759258
    two   -1.000767  1.366796
    three -0.690482  0.207695
bar one   -0.182791  0.034401
    two    0.618155  1.569673
    three -0.215409  1.034241

Plotting

We use the standard convention for referencing the matplotlib API:

In [65]: import matplotlib.pyplot as plt

In [66]: plt.close('all')
In [67]: ts = md.Series(mt.random.randn(1000),
   ....:                index=md.date_range('1/1/2000', periods=1000))
   ....: 

In [68]: ts = ts.cumsum()

In [69]: ts.plot()
Out[69]: <AxesSubplot:>
../../_images/series_plot_basic.png

On a DataFrame, the plot() method is a convenience to plot all of the columns with labels:

In [70]: df = md.DataFrame(mt.random.randn(1000, 4), index=ts.index,
   ....:                   columns=['A', 'B', 'C', 'D'])
   ....: 

In [71]: df = df.cumsum()

In [72]: plt.figure()
Out[72]: <Figure size 640x480 with 0 Axes>

In [73]: df.plot()
Out[73]: <AxesSubplot:>

In [74]: plt.legend(loc='best')
Out[74]: <matplotlib.legend.Legend at 0x7ff8ae815e90>
../../_images/frame_plot_basic.png

Getting data in/out

CSV

In [75]: df.to_csv('foo.csv').execute()
Out[75]: 
Empty DataFrame
Columns: []
Index: []

Reading from a csv file.

In [76]: md.read_csv('foo.csv').execute()
Out[76]: 
     Unnamed: 0          A          B          C         D
0    2000-01-01  -0.135754  -1.479990  -0.750506  1.332619
1    2000-01-02   0.950278  -1.360197  -0.502147  1.744138
2    2000-01-03   0.713959  -2.006620  -0.653554  3.877728
3    2000-01-04   1.213436  -0.057034   0.224899  3.707546
4    2000-01-05   0.672141   0.695177   0.611897  3.409125
..          ...        ...        ...        ...       ...
995  2002-09-22 -26.686348  52.440448 -26.252941  2.677829
996  2002-09-23 -26.763264  53.322395 -26.425633  2.582568
997  2002-09-24 -26.147643  53.618595 -29.084498  2.919243
998  2002-09-25 -26.120828  53.276693 -29.080375  3.320198
999  2002-09-26 -27.257435  52.324406 -29.365879  3.118605

[1000 rows x 5 columns]