10 minutes to Mars DataFrame

This is a short introduction to Mars DataFrame which is originated from 10 minutes to pandas.

Customarily, we import as follows:

In [1]: import mars.tensor as mt

In [2]: import mars.dataframe as md

Object creation

Creating a Series by passing a list of values, letting it create a default integer index:

In [3]: s = md.Series([1, 3, 5, mt.nan, 6, 8])

In [4]: s.execute()
Out[4]: 
0    1.0
1    3.0
2    5.0
3    NaN
4    6.0
5    8.0
dtype: float64

Creating a DataFrame by passing a Mars tensor, with a datetime index and labeled columns:

In [5]: dates = md.date_range('20130101', periods=6)

In [6]: dates.execute()
Out[6]: 
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
               '2013-01-05', '2013-01-06'],
              dtype='datetime64[ns]', freq='D')

In [7]: df = md.DataFrame(mt.random.randn(6, 4), index=dates, columns=list('ABCD'))

In [8]: df.execute()
Out[8]: 
                   A         B         C         D
2013-01-01  1.043755  2.309170  0.324749  1.144729
2013-01-02  0.500592 -0.370719  1.094474 -0.401957
2013-01-03  1.080591 -0.345569  0.437794 -0.557006
2013-01-04 -2.540776 -0.056718 -0.200216  0.239328
2013-01-05 -0.471682 -0.037104 -1.783580  0.228240
2013-01-06  0.915979 -0.695047  0.252153  1.100600

Creating a DataFrame by passing a dict of objects that can be converted to series-like.

In [9]: df2 = md.DataFrame({'A': 1.,
   ...:                     'B': md.Timestamp('20130102'),
   ...:                     'C': md.Series(1, index=list(range(4)), dtype='float32'),
   ...:                     'D': mt.array([3] * 4, dtype='int32'),
   ...:                     'E': 'foo'})
   ...: 

In [10]: df2.execute()
Out[10]: 
     A          B    C  D    E
0  1.0 2013-01-02  1.0  3  foo
1  1.0 2013-01-02  1.0  3  foo
2  1.0 2013-01-02  1.0  3  foo
3  1.0 2013-01-02  1.0  3  foo

The columns of the resulting DataFrame have different dtypes.

In [11]: df2.dtypes
Out[11]: 
A           float64
B    datetime64[ns]
C           float32
D             int32
E            object
dtype: object

Viewing data

Here is how to view the top and bottom rows of the frame:

In [12]: df.head().execute()
Out[12]: 
                   A         B         C         D
2013-01-01  1.043755  2.309170  0.324749  1.144729
2013-01-02  0.500592 -0.370719  1.094474 -0.401957
2013-01-03  1.080591 -0.345569  0.437794 -0.557006
2013-01-04 -2.540776 -0.056718 -0.200216  0.239328
2013-01-05 -0.471682 -0.037104 -1.783580  0.228240

In [13]: df.tail(3).execute()
Out[13]: 
                   A         B         C         D
2013-01-04 -2.540776 -0.056718 -0.200216  0.239328
2013-01-05 -0.471682 -0.037104 -1.783580  0.228240
2013-01-06  0.915979 -0.695047  0.252153  1.100600

Display the index, columns:

In [14]: df.index.execute()
Out[14]: 
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
               '2013-01-05', '2013-01-06'],
              dtype='datetime64[ns]', freq='D')

In [15]: df.columns.execute()
Out[15]: Index(['A', 'B', 'C', 'D'], dtype='object')

DataFrame.to_tensor() gives a Mars tensor representation of the underlying data. Note that this can be an expensive operation when your DataFrame has columns with different data types, which comes down to a fundamental difference between DataFrame and tensor: tensors have one dtype for the entire tensor, while DataFrames have one dtype per column. When you call DataFrame.to_tensor(), Mars DataFrame will find the tensor dtype that can hold all of the dtypes in the DataFrame. This may end up being object, which requires casting every value to a Python object.

For df, our DataFrame of all floating-point values, DataFrame.to_tensor() is fast and doesn’t require copying data.

In [16]: df.to_tensor().execute()
Out[16]: 
array([[ 1.04375499,  2.30916957,  0.32474853,  1.14472944],
       [ 0.50059249, -0.37071868,  1.09447436, -0.40195708],
       [ 1.08059091, -0.34556868,  0.4377943 , -0.55700621],
       [-2.54077626, -0.05671761, -0.20021623,  0.23932794],
       [-0.47168183, -0.0371038 , -1.7835804 ,  0.22823989],
       [ 0.91597909, -0.6950472 ,  0.25215328,  1.1005995 ]])

For df2, the DataFrame with multiple dtypes, DataFrame.to_tensor() is relatively expensive.

In [17]: df2.to_tensor().execute()
Out[17]: 
array([[1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo'],
       [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo'],
       [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo'],
       [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo']],
      dtype=object)

Note

DataFrame.to_tensor() does not include the index or column labels in the output.

describe() shows a quick statistic summary of your data:

In [18]: df.describe().execute()
Out[18]: 
              A         B         C         D
count  6.000000  6.000000  6.000000  6.000000
mean   0.088077  0.134002  0.020896  0.292322
std    1.412671  1.092617  0.977467  0.719751
min   -2.540776 -0.695047 -1.783580 -0.557006
25%   -0.228613 -0.364431 -0.087124 -0.244408
50%    0.708286 -0.201143  0.288451  0.233784
75%    1.011811 -0.042007  0.409533  0.885282
max    1.080591  2.309170  1.094474  1.144729

Sorting by an axis:

In [19]: df.sort_index(axis=1, ascending=False).execute()
Out[19]: 
                   D         C         B         A
2013-01-01  1.144729  0.324749  2.309170  1.043755
2013-01-02 -0.401957  1.094474 -0.370719  0.500592
2013-01-03 -0.557006  0.437794 -0.345569  1.080591
2013-01-04  0.239328 -0.200216 -0.056718 -2.540776
2013-01-05  0.228240 -1.783580 -0.037104 -0.471682
2013-01-06  1.100600  0.252153 -0.695047  0.915979

Sorting by values:

In [20]: df.sort_values(by='B').execute()
Out[20]: 
                   A         B         C         D
2013-01-06  0.915979 -0.695047  0.252153  1.100600
2013-01-02  0.500592 -0.370719  1.094474 -0.401957
2013-01-03  1.080591 -0.345569  0.437794 -0.557006
2013-01-04 -2.540776 -0.056718 -0.200216  0.239328
2013-01-05 -0.471682 -0.037104 -1.783580  0.228240
2013-01-01  1.043755  2.309170  0.324749  1.144729

Selection

Note

While standard Python / Numpy expressions for selecting and setting are intuitive and come in handy for interactive work, for production code, we recommend the optimized DataFrame data access methods, .at, .iat, .loc and .iloc.

Getting

Selecting a single column, which yields a Series, equivalent to df.A:

In [21]: df['A'].execute()
Out[21]: 
2013-01-01    1.043755
2013-01-02    0.500592
2013-01-03    1.080591
2013-01-04   -2.540776
2013-01-05   -0.471682
2013-01-06    0.915979
Freq: D, Name: A, dtype: float64

Selecting via [], which slices the rows.

In [22]: df[0:3].execute()
Out[22]: 
                   A         B         C         D
2013-01-01  1.043755  2.309170  0.324749  1.144729
2013-01-02  0.500592 -0.370719  1.094474 -0.401957
2013-01-03  1.080591 -0.345569  0.437794 -0.557006

In [23]: df['20130102':'20130104'].execute()
Out[23]: 
                   A         B         C         D
2013-01-02  0.500592 -0.370719  1.094474 -0.401957
2013-01-03  1.080591 -0.345569  0.437794 -0.557006
2013-01-04 -2.540776 -0.056718 -0.200216  0.239328

Selection by label

For getting a cross section using a label:

In [24]: df.loc['20130101'].execute()
Out[24]: 
A    1.043755
B    2.309170
C    0.324749
D    1.144729
Name: 2013-01-01 00:00:00, dtype: float64

Selecting on a multi-axis by label:

In [25]: df.loc[:, ['A', 'B']].execute()
Out[25]: 
                   A         B
2013-01-01  1.043755  2.309170
2013-01-02  0.500592 -0.370719
2013-01-03  1.080591 -0.345569
2013-01-04 -2.540776 -0.056718
2013-01-05 -0.471682 -0.037104
2013-01-06  0.915979 -0.695047

Showing label slicing, both endpoints are included:

In [26]: df.loc['20130102':'20130104', ['A', 'B']].execute()
Out[26]: 
                   A         B
2013-01-02  0.500592 -0.370719
2013-01-03  1.080591 -0.345569
2013-01-04 -2.540776 -0.056718

Reduction in the dimensions of the returned object:

In [27]: df.loc['20130102', ['A', 'B']].execute()
Out[27]: 
A    0.500592
B   -0.370719
Name: 2013-01-02 00:00:00, dtype: float64

For getting a scalar value:

In [28]: df.loc['20130101', 'A'].execute()
Out[28]: 1.0437549859156983

For getting fast access to a scalar (equivalent to the prior method):

In [29]: df.at['20130101', 'A'].execute()
Out[29]: 1.0437549859156983

Selection by position

Select via the position of the passed integers:

In [30]: df.iloc[3].execute()
Out[30]: 
A   -2.540776
B   -0.056718
C   -0.200216
D    0.239328
Name: 2013-01-04 00:00:00, dtype: float64

By integer slices, acting similar to numpy/python:

In [31]: df.iloc[3:5, 0:2].execute()
Out[31]: 
                   A         B
2013-01-04 -2.540776 -0.056718
2013-01-05 -0.471682 -0.037104

By lists of integer position locations, similar to the numpy/python style:

In [32]: df.iloc[[1, 2, 4], [0, 2]].execute()
Out[32]: 
                   A         C
2013-01-02  0.500592  1.094474
2013-01-03  1.080591  0.437794
2013-01-05 -0.471682 -1.783580

For slicing rows explicitly:

In [33]: df.iloc[1:3, :].execute()
Out[33]: 
                   A         B         C         D
2013-01-02  0.500592 -0.370719  1.094474 -0.401957
2013-01-03  1.080591 -0.345569  0.437794 -0.557006

For slicing columns explicitly:

In [34]: df.iloc[:, 1:3].execute()
Out[34]: 
                   B         C
2013-01-01  2.309170  0.324749
2013-01-02 -0.370719  1.094474
2013-01-03 -0.345569  0.437794
2013-01-04 -0.056718 -0.200216
2013-01-05 -0.037104 -1.783580
2013-01-06 -0.695047  0.252153

For getting a value explicitly:

In [35]: df.iloc[1, 1].execute()
Out[35]: -0.3707186767080351

For getting fast access to a scalar (equivalent to the prior method):

In [36]: df.iat[1, 1].execute()
Out[36]: -0.3707186767080351

Boolean indexing

Using a single column’s values to select data.

In [37]: df[df['A'] > 0].execute()
Out[37]: 
                   A         B         C         D
2013-01-01  1.043755  2.309170  0.324749  1.144729
2013-01-02  0.500592 -0.370719  1.094474 -0.401957
2013-01-03  1.080591 -0.345569  0.437794 -0.557006
2013-01-06  0.915979 -0.695047  0.252153  1.100600

Selecting values from a DataFrame where a boolean condition is met.

In [38]: df[df > 0].execute()
Out[38]: 
                   A        B         C         D
2013-01-01  1.043755  2.30917  0.324749  1.144729
2013-01-02  0.500592      NaN  1.094474       NaN
2013-01-03  1.080591      NaN  0.437794       NaN
2013-01-04       NaN      NaN       NaN  0.239328
2013-01-05       NaN      NaN       NaN  0.228240
2013-01-06  0.915979      NaN  0.252153  1.100600

Operations

Stats

Operations in general exclude missing data.

Performing a descriptive statistic:

In [39]: df.mean().execute()
Out[39]: 
A    0.088077
B    0.134002
C    0.020896
D    0.292322
dtype: float64

Same operation on the other axis:

In [40]: df.mean(1).execute()
Out[40]: 
2013-01-01    1.205601
2013-01-02    0.205598
2013-01-03    0.153953
2013-01-04   -0.639596
2013-01-05   -0.516032
2013-01-06    0.393421
Freq: D, dtype: float64

Operating with objects that have different dimensionality and need alignment. In addition, Mars DataFrame automatically broadcasts along the specified dimension.

In [41]: s = md.Series([1, 3, 5, mt.nan, 6, 8], index=dates).shift(2)

In [42]: s.execute()
Out[42]: 
2013-01-01    NaN
2013-01-02    NaN
2013-01-03    1.0
2013-01-04    3.0
2013-01-05    5.0
2013-01-06    NaN
Freq: D, dtype: float64

In [43]: df.sub(s, axis='index').execute()
Out[43]: 
                   A         B         C         D
2013-01-01       NaN       NaN       NaN       NaN
2013-01-02       NaN       NaN       NaN       NaN
2013-01-03  0.080591 -1.345569 -0.562206 -1.557006
2013-01-04 -5.540776 -3.056718 -3.200216 -2.760672
2013-01-05 -5.471682 -5.037104 -6.783580 -4.771760
2013-01-06       NaN       NaN       NaN       NaN

Apply

Applying functions to the data:

In [44]: df.apply(lambda x: x.max() - x.min()).execute()
Out[44]: 
A    3.621367
B    3.004217
C    2.878055
D    1.701736
dtype: float64

String Methods

Series is equipped with a set of string processing methods in the str attribute that make it easy to operate on each element of the array, as in the code snippet below. Note that pattern-matching in str generally uses regular expressions by default (and in some cases always uses them). See more at Vectorized String Methods.

In [45]: s = md.Series(['A', 'B', 'C', 'Aaba', 'Baca', mt.nan, 'CABA', 'dog', 'cat'])

In [46]: s.str.lower().execute()
Out[46]: 
0       a
1       b
2       c
3    aaba
4    baca
5     NaN
6    caba
7     dog
8     cat
dtype: object

Merge

Concat

Mars DataFrame provides various facilities for easily combining together Series and DataFrame objects with various kinds of set logic for the indexes and relational algebra functionality in the case of join / merge-type operations.

Concatenating DataFrame objects together with concat():

In [47]: df = md.DataFrame(mt.random.randn(10, 4))

In [48]: df.execute()
Out[48]: 
          0         1         2         3
0 -0.717758  0.810613 -1.500468 -1.461232
1 -0.794482  0.704914 -0.569860 -0.406238
2 -0.701629  0.881165  0.590703 -0.113939
3  1.396237 -0.607225  0.541873 -0.306653
4  1.121766 -0.747996 -0.412997 -1.707973
5  1.790304 -0.141414 -0.401037  0.825045
6  0.913342  0.274045  0.844454 -0.130757
7 -1.259749  2.112436  0.347796 -0.586452
8 -0.636899 -1.147331 -0.048829 -0.678280
9  0.850827  0.776528  2.307371 -1.425310

# break it into pieces
In [49]: pieces = [df[:3], df[3:7], df[7:]]

In [50]: md.concat(pieces).execute()
Out[50]: 
          0         1         2         3
0 -0.717758  0.810613 -1.500468 -1.461232
1 -0.794482  0.704914 -0.569860 -0.406238
2 -0.701629  0.881165  0.590703 -0.113939
3  1.396237 -0.607225  0.541873 -0.306653
4  1.121766 -0.747996 -0.412997 -1.707973
5  1.790304 -0.141414 -0.401037  0.825045
6  0.913342  0.274045  0.844454 -0.130757
7 -1.259749  2.112436  0.347796 -0.586452
8 -0.636899 -1.147331 -0.048829 -0.678280
9  0.850827  0.776528  2.307371 -1.425310

Note

Adding a column to a DataFrame is relatively fast. However, adding a row requires a copy, and may be expensive. We recommend passing a pre-built list of records to the DataFrame constructor instead of building a DataFrame by iteratively appending records to it.

Join

SQL style merges. See the Database style joining section.

In [51]: left = md.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]})

In [52]: right = md.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]})

In [53]: left.execute()
Out[53]: 
   key  lval
0  foo     1
1  foo     2

In [54]: right.execute()
Out[54]: 
   key  rval
0  foo     4
1  foo     5

In [55]: md.merge(left, right, on='key').execute()
Out[55]: 
   key  lval  rval
0  foo     1     4
1  foo     1     5
2  foo     2     4
3  foo     2     5

Another example that can be given is:

In [56]: left = md.DataFrame({'key': ['foo', 'bar'], 'lval': [1, 2]})

In [57]: right = md.DataFrame({'key': ['foo', 'bar'], 'rval': [4, 5]})

In [58]: left.execute()
Out[58]: 
   key  lval
0  foo     1
1  bar     2

In [59]: right.execute()
Out[59]: 
   key  rval
0  foo     4
1  bar     5

In [60]: md.merge(left, right, on='key').execute()
Out[60]: 
   key  lval  rval
0  foo     1     4
1  bar     2     5

Grouping

By “group by” we are referring to a process involving one or more of the following steps:

  • Splitting the data into groups based on some criteria

  • Applying a function to each group independently

  • Combining the results into a data structure

In [61]: df = md.DataFrame({'A': ['foo', 'bar', 'foo', 'bar',
   ....:                          'foo', 'bar', 'foo', 'foo'],
   ....:                    'B': ['one', 'one', 'two', 'three',
   ....:                          'two', 'two', 'one', 'three'],
   ....:                    'C': mt.random.randn(8),
   ....:                    'D': mt.random.randn(8)})
   ....: 

In [62]: df.execute()
Out[62]: 
     A      B         C         D
0  foo    one -0.235811  0.802962
1  bar    one  0.232855  2.015546
2  foo    two -0.164371  0.541638
3  bar  three -1.499688 -0.171886
4  foo    two -1.769741  1.394730
5  bar    two  0.580503  0.993597
6  foo    one -0.275785 -0.611533
7  foo  three -0.417126  0.446499

Grouping and then applying the sum() function to the resulting groups.

In [63]: df.groupby('A').sum().execute()
Out[63]: 
            C         D
A                      
bar -0.686331  2.837257
foo -2.862833  2.574296

Grouping by multiple columns forms a hierarchical index, and again we can apply the sum function.

In [64]: df.groupby(['A', 'B']).sum().execute()
Out[64]: 
                  C         D
A   B                        
foo one   -0.511596  0.191429
    two   -1.934111  1.936368
    three -0.417126  0.446499
bar one    0.232855  2.015546
    two    0.580503  0.993597
    three -1.499688 -0.171886

Plotting

We use the standard convention for referencing the matplotlib API:

In [65]: import matplotlib.pyplot as plt

In [66]: plt.close('all')
In [67]: ts = md.Series(mt.random.randn(1000),
   ....:                index=md.date_range('1/1/2000', periods=1000))
   ....: 

In [68]: ts = ts.cumsum()

In [69]: ts.plot()
Out[69]: <AxesSubplot:>
../../_images/series_plot_basic.png

On a DataFrame, the plot() method is a convenience to plot all of the columns with labels:

In [70]: df = md.DataFrame(mt.random.randn(1000, 4), index=ts.index,
   ....:                   columns=['A', 'B', 'C', 'D'])
   ....: 

In [71]: df = df.cumsum()

In [72]: plt.figure()
Out[72]: <Figure size 640x480 with 0 Axes>

In [73]: df.plot()
Out[73]: <AxesSubplot:>

In [74]: plt.legend(loc='best')
Out[74]: <matplotlib.legend.Legend at 0x7fa0df6b0810>
../../_images/frame_plot_basic.png

Getting data in/out

CSV

In [75]: df.to_csv('foo.csv').execute()
Out[75]: 
Empty DataFrame
Columns: []
Index: []

Reading from a csv file.

In [76]: md.read_csv('foo.csv').execute()
Out[76]: 
     Unnamed: 0          A          B          C          D
0    2000-01-01   0.771673  -0.504049   0.620185   2.326599
1    2000-01-02   1.890644   0.002323   2.077618   1.615241
2    2000-01-03   0.137598   1.507905   2.214008   2.173546
3    2000-01-04  -1.317706   1.452865   2.185098   2.765024
4    2000-01-05  -1.052392   0.332555   2.136626   3.417819
..          ...        ...        ...        ...        ...
995  2002-09-22 -10.982176  78.410901 -16.634185  15.069612
996  2002-09-23 -10.634887  78.473156 -17.257791  15.683571
997  2002-09-24 -10.947374  78.524738 -16.746819  14.429695
998  2002-09-25 -10.079642  79.320475 -18.122158  14.725914
999  2002-09-26 -10.665226  81.167987 -17.386248  13.205201

[1000 rows x 5 columns]