10 minutes to Mars DataFrame

This is a short introduction to Mars DataFrame which is originated from 10 minutes to pandas.

Customarily, we import as follows:

In [1]: import mars.tensor as mt

In [2]: import mars.dataframe as md

Object creation

Creating a Series by passing a list of values, letting it create a default integer index:

In [3]: s = md.Series([1, 3, 5, mt.nan, 6, 8])

In [4]: s.execute()
Out[4]: 
0    1.0
1    3.0
2    5.0
3    NaN
4    6.0
5    8.0
dtype: float64

Creating a DataFrame by passing a Mars tensor, with a datetime index and labeled columns:

In [5]: dates = md.date_range('20130101', periods=6)

In [6]: dates.execute()
Out[6]: 
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
               '2013-01-05', '2013-01-06'],
              dtype='datetime64[ns]', freq='D')

In [7]: df = md.DataFrame(mt.random.randn(6, 4), index=dates, columns=list('ABCD'))

In [8]: df.execute()
Out[8]: 
                   A         B         C         D
2013-01-01  0.557885  0.470411 -0.873449 -0.070733
2013-01-02  0.675828  0.901187 -0.453088 -0.104001
2013-01-03  1.282714  0.658673 -0.552264  0.901889
2013-01-04  1.187872  0.506431  0.740055  2.086557
2013-01-05  0.565737  1.137972 -0.747667  1.917502
2013-01-06  0.653736  0.610252 -0.368207 -0.337543

Creating a DataFrame by passing a dict of objects that can be converted to series-like.

In [9]: df2 = md.DataFrame({'A': 1.,
   ...:                     'B': md.Timestamp('20130102'),
   ...:                     'C': md.Series(1, index=list(range(4)), dtype='float32'),
   ...:                     'D': mt.array([3] * 4, dtype='int32'),
   ...:                     'E': 'foo'})
   ...: 

In [10]: df2.execute()
Out[10]: 
     A          B    C  D    E
0  1.0 2013-01-02  1.0  3  foo
1  1.0 2013-01-02  1.0  3  foo
2  1.0 2013-01-02  1.0  3  foo
3  1.0 2013-01-02  1.0  3  foo

The columns of the resulting DataFrame have different dtypes.

In [11]: df2.dtypes
Out[11]: 
A           float64
B    datetime64[ns]
C           float32
D             int32
E            object
dtype: object

Viewing data

Here is how to view the top and bottom rows of the frame:

In [12]: df.head().execute()
Out[12]: 
                   A         B         C         D
2013-01-01  0.557885  0.470411 -0.873449 -0.070733
2013-01-02  0.675828  0.901187 -0.453088 -0.104001
2013-01-03  1.282714  0.658673 -0.552264  0.901889
2013-01-04  1.187872  0.506431  0.740055  2.086557
2013-01-05  0.565737  1.137972 -0.747667  1.917502

In [13]: df.tail(3).execute()
Out[13]: 
                   A         B         C         D
2013-01-04  1.187872  0.506431  0.740055  2.086557
2013-01-05  0.565737  1.137972 -0.747667  1.917502
2013-01-06  0.653736  0.610252 -0.368207 -0.337543

Display the index, columns:

In [14]: df.index.execute()
Out[14]: 
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
               '2013-01-05', '2013-01-06'],
              dtype='datetime64[ns]', freq='D')

In [15]: df.columns.execute()
Out[15]: Index(['A', 'B', 'C', 'D'], dtype='object')

DataFrame.to_tensor() gives a Mars tensor representation of the underlying data. Note that this can be an expensive operation when your DataFrame has columns with different data types, which comes down to a fundamental difference between DataFrame and tensor: tensors have one dtype for the entire tensor, while DataFrames have one dtype per column. When you call DataFrame.to_tensor(), Mars DataFrame will find the tensor dtype that can hold all of the dtypes in the DataFrame. This may end up being object, which requires casting every value to a Python object.

For df, our DataFrame of all floating-point values, DataFrame.to_tensor() is fast and doesn’t require copying data.

In [16]: df.to_tensor().execute()
Out[16]: 
array([[ 0.55788455,  0.47041061, -0.87344889, -0.0707333 ],
       [ 0.67582823,  0.90118741, -0.45308801, -0.10400123],
       [ 1.28271368,  0.65867339, -0.55226379,  0.90188851],
       [ 1.18787188,  0.50643116,  0.74005464,  2.08655746],
       [ 0.56573706,  1.13797218, -0.74766677,  1.91750157],
       [ 0.65373621,  0.61025222, -0.36820704, -0.3375432 ]])

For df2, the DataFrame with multiple dtypes, DataFrame.to_tensor() is relatively expensive.

In [17]: df2.to_tensor().execute()
Out[17]: 
array([[1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo'],
       [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo'],
       [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo'],
       [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo']],
      dtype=object)

Note

DataFrame.to_tensor() does not include the index or column labels in the output.

describe() shows a quick statistic summary of your data:

In [18]: df.describe().execute()
Out[18]: 
              A         B         C         D
count  6.000000  6.000000  6.000000  6.000000
mean   0.820629  0.714154 -0.375770  0.732278
std    0.325949  0.257308  0.577623  1.072968
min    0.557885  0.470411 -0.873449 -0.337543
25%    0.587737  0.532386 -0.698816 -0.095684
50%    0.664782  0.634463 -0.502676  0.415578
75%    1.059861  0.840559 -0.389427  1.663598
max    1.282714  1.137972  0.740055  2.086557

Sorting by an axis:

In [19]: df.sort_index(axis=1, ascending=False).execute()
Out[19]: 
                   D         C         B         A
2013-01-01 -0.070733 -0.873449  0.470411  0.557885
2013-01-02 -0.104001 -0.453088  0.901187  0.675828
2013-01-03  0.901889 -0.552264  0.658673  1.282714
2013-01-04  2.086557  0.740055  0.506431  1.187872
2013-01-05  1.917502 -0.747667  1.137972  0.565737
2013-01-06 -0.337543 -0.368207  0.610252  0.653736

Sorting by values:

In [20]: df.sort_values(by='B').execute()
Out[20]: 
                   A         B         C         D
2013-01-01  0.557885  0.470411 -0.873449 -0.070733
2013-01-04  1.187872  0.506431  0.740055  2.086557
2013-01-06  0.653736  0.610252 -0.368207 -0.337543
2013-01-03  1.282714  0.658673 -0.552264  0.901889
2013-01-02  0.675828  0.901187 -0.453088 -0.104001
2013-01-05  0.565737  1.137972 -0.747667  1.917502

Selection

Note

While standard Python / Numpy expressions for selecting and setting are intuitive and come in handy for interactive work, for production code, we recommend the optimized DataFrame data access methods, .at, .iat, .loc and .iloc.

Getting

Selecting a single column, which yields a Series, equivalent to df.A:

In [21]: df['A'].execute()
Out[21]: 
2013-01-01    0.557885
2013-01-02    0.675828
2013-01-03    1.282714
2013-01-04    1.187872
2013-01-05    0.565737
2013-01-06    0.653736
Freq: D, Name: A, dtype: float64

Selecting via [], which slices the rows.

In [22]: df[0:3].execute()
Out[22]: 
                   A         B         C         D
2013-01-01  0.557885  0.470411 -0.873449 -0.070733
2013-01-02  0.675828  0.901187 -0.453088 -0.104001
2013-01-03  1.282714  0.658673 -0.552264  0.901889

In [23]: df['20130102':'20130104'].execute()
Out[23]: 
                   A         B         C         D
2013-01-02  0.675828  0.901187 -0.453088 -0.104001
2013-01-03  1.282714  0.658673 -0.552264  0.901889
2013-01-04  1.187872  0.506431  0.740055  2.086557

Selection by label

For getting a cross section using a label:

In [24]: df.loc['20130101'].execute()
Out[24]: 
A    0.557885
B    0.470411
C   -0.873449
D   -0.070733
Name: 2013-01-01 00:00:00, dtype: float64

Selecting on a multi-axis by label:

In [25]: df.loc[:, ['A', 'B']].execute()
Out[25]: 
                   A         B
2013-01-01  0.557885  0.470411
2013-01-02  0.675828  0.901187
2013-01-03  1.282714  0.658673
2013-01-04  1.187872  0.506431
2013-01-05  0.565737  1.137972
2013-01-06  0.653736  0.610252

Showing label slicing, both endpoints are included:

In [26]: df.loc['20130102':'20130104', ['A', 'B']].execute()
Out[26]: 
                   A         B
2013-01-02  0.675828  0.901187
2013-01-03  1.282714  0.658673
2013-01-04  1.187872  0.506431

Reduction in the dimensions of the returned object:

In [27]: df.loc['20130102', ['A', 'B']].execute()
Out[27]: 
A    0.675828
B    0.901187
Name: 2013-01-02 00:00:00, dtype: float64

For getting a scalar value:

In [28]: df.loc['20130101', 'A'].execute()
Out[28]: 0.5578845459804017

For getting fast access to a scalar (equivalent to the prior method):

In [29]: df.at['20130101', 'A'].execute()
Out[29]: 0.5578845459804017

Selection by position

Select via the position of the passed integers:

In [30]: df.iloc[3].execute()
Out[30]: 
A    1.187872
B    0.506431
C    0.740055
D    2.086557
Name: 2013-01-04 00:00:00, dtype: float64

By integer slices, acting similar to numpy/python:

In [31]: df.iloc[3:5, 0:2].execute()
Out[31]: 
                   A         B
2013-01-04  1.187872  0.506431
2013-01-05  0.565737  1.137972

By lists of integer position locations, similar to the numpy/python style:

In [32]: df.iloc[[1, 2, 4], [0, 2]].execute()
Out[32]: 
                   A         C
2013-01-02  0.675828 -0.453088
2013-01-03  1.282714 -0.552264
2013-01-05  0.565737 -0.747667

For slicing rows explicitly:

In [33]: df.iloc[1:3, :].execute()
Out[33]: 
                   A         B         C         D
2013-01-02  0.675828  0.901187 -0.453088 -0.104001
2013-01-03  1.282714  0.658673 -0.552264  0.901889

For slicing columns explicitly:

In [34]: df.iloc[:, 1:3].execute()
Out[34]: 
                   B         C
2013-01-01  0.470411 -0.873449
2013-01-02  0.901187 -0.453088
2013-01-03  0.658673 -0.552264
2013-01-04  0.506431  0.740055
2013-01-05  1.137972 -0.747667
2013-01-06  0.610252 -0.368207

For getting a value explicitly:

In [35]: df.iloc[1, 1].execute()
Out[35]: 0.9011874124512463

For getting fast access to a scalar (equivalent to the prior method):

In [36]: df.iat[1, 1].execute()
Out[36]: 0.9011874124512463

Boolean indexing

Using a single column’s values to select data.

In [37]: df[df['A'] > 0].execute()
Out[37]: 
                   A         B         C         D
2013-01-01  0.557885  0.470411 -0.873449 -0.070733
2013-01-02  0.675828  0.901187 -0.453088 -0.104001
2013-01-03  1.282714  0.658673 -0.552264  0.901889
2013-01-04  1.187872  0.506431  0.740055  2.086557
2013-01-05  0.565737  1.137972 -0.747667  1.917502
2013-01-06  0.653736  0.610252 -0.368207 -0.337543

Selecting values from a DataFrame where a boolean condition is met.

In [38]: df[df > 0].execute()
Out[38]: 
                   A         B         C         D
2013-01-01  0.557885  0.470411       NaN       NaN
2013-01-02  0.675828  0.901187       NaN       NaN
2013-01-03  1.282714  0.658673       NaN  0.901889
2013-01-04  1.187872  0.506431  0.740055  2.086557
2013-01-05  0.565737  1.137972       NaN  1.917502
2013-01-06  0.653736  0.610252       NaN       NaN

Operations

Stats

Operations in general exclude missing data.

Performing a descriptive statistic:

In [39]: df.mean().execute()
Out[39]: 
A    0.820629
B    0.714154
C   -0.375770
D    0.732278
dtype: float64

Same operation on the other axis:

In [40]: df.mean(1).execute()
Out[40]: 
2013-01-01    0.021028
2013-01-02    0.254982
2013-01-03    0.572753
2013-01-04    1.130229
2013-01-05    0.718386
2013-01-06    0.139560
Freq: D, dtype: float64

Operating with objects that have different dimensionality and need alignment. In addition, Mars DataFrame automatically broadcasts along the specified dimension.

In [41]: s = md.Series([1, 3, 5, mt.nan, 6, 8], index=dates).shift(2)

In [42]: s.execute()
Out[42]: 
2013-01-01    NaN
2013-01-02    NaN
2013-01-03    1.0
2013-01-04    3.0
2013-01-05    5.0
2013-01-06    NaN
Freq: D, dtype: float64

In [43]: df.sub(s, axis='index').execute()
Out[43]: 
                   A         B         C         D
2013-01-01       NaN       NaN       NaN       NaN
2013-01-02       NaN       NaN       NaN       NaN
2013-01-03  0.282714 -0.341327 -1.552264 -0.098111
2013-01-04 -1.812128 -2.493569 -2.259945 -0.913443
2013-01-05 -4.434263 -3.862028 -5.747667 -3.082498
2013-01-06       NaN       NaN       NaN       NaN

Apply

Applying functions to the data:

In [44]: df.apply(lambda x: x.max() - x.min()).execute()
Out[44]: 
A    0.724829
B    0.667562
C    1.613504
D    2.424101
dtype: float64

String Methods

Series is equipped with a set of string processing methods in the str attribute that make it easy to operate on each element of the array, as in the code snippet below. Note that pattern-matching in str generally uses regular expressions by default (and in some cases always uses them). See more at Vectorized String Methods.

In [45]: s = md.Series(['A', 'B', 'C', 'Aaba', 'Baca', mt.nan, 'CABA', 'dog', 'cat'])

In [46]: s.str.lower().execute()
Out[46]: 
0       a
1       b
2       c
3    aaba
4    baca
5     NaN
6    caba
7     dog
8     cat
dtype: object

Merge

Concat

Mars DataFrame provides various facilities for easily combining together Series and DataFrame objects with various kinds of set logic for the indexes and relational algebra functionality in the case of join / merge-type operations.

Concatenating DataFrame objects together with concat():

In [47]: df = md.DataFrame(mt.random.randn(10, 4))

In [48]: df.execute()
Out[48]: 
          0         1         2         3
0  0.303937  0.676581  0.297204  0.338003
1 -1.541509  1.164739  1.170399  0.051969
2 -0.262747  1.534308 -0.556279 -0.101921
3 -1.327300 -0.028588 -0.724176 -1.103875
4 -1.550649 -0.095343 -0.266349 -0.888187
5 -0.042037  1.028927 -0.820438  1.022288
6  0.991051 -0.513336 -1.557178  0.697850
7  1.680323  0.842725  1.755703  0.911513
8 -0.831695 -0.636868  0.676978  0.143900
9 -0.064976 -0.802800 -1.541547  0.833808

# break it into pieces
In [49]: pieces = [df[:3], df[3:7], df[7:]]

In [50]: md.concat(pieces).execute()
Out[50]: 
          0         1         2         3
0  0.303937  0.676581  0.297204  0.338003
1 -1.541509  1.164739  1.170399  0.051969
2 -0.262747  1.534308 -0.556279 -0.101921
3 -1.327300 -0.028588 -0.724176 -1.103875
4 -1.550649 -0.095343 -0.266349 -0.888187
5 -0.042037  1.028927 -0.820438  1.022288
6  0.991051 -0.513336 -1.557178  0.697850
7  1.680323  0.842725  1.755703  0.911513
8 -0.831695 -0.636868  0.676978  0.143900
9 -0.064976 -0.802800 -1.541547  0.833808

Note

Adding a column to a DataFrame is relatively fast. However, adding a row requires a copy, and may be expensive. We recommend passing a pre-built list of records to the DataFrame constructor instead of building a DataFrame by iteratively appending records to it.

Join

SQL style merges. See the Database style joining section.

In [51]: left = md.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]})

In [52]: right = md.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]})

In [53]: left.execute()
Out[53]: 
   key  lval
0  foo     1
1  foo     2

In [54]: right.execute()
Out[54]: 
   key  rval
0  foo     4
1  foo     5

In [55]: md.merge(left, right, on='key').execute()
Out[55]: 
   key  lval  rval
0  foo     1     4
1  foo     1     5
2  foo     2     4
3  foo     2     5

Another example that can be given is:

In [56]: left = md.DataFrame({'key': ['foo', 'bar'], 'lval': [1, 2]})

In [57]: right = md.DataFrame({'key': ['foo', 'bar'], 'rval': [4, 5]})

In [58]: left.execute()
Out[58]: 
   key  lval
0  foo     1
1  bar     2

In [59]: right.execute()
Out[59]: 
   key  rval
0  foo     4
1  bar     5

In [60]: md.merge(left, right, on='key').execute()
Out[60]: 
   key  lval  rval
0  foo     1     4
1  bar     2     5

Grouping

By “group by” we are referring to a process involving one or more of the following steps:

  • Splitting the data into groups based on some criteria

  • Applying a function to each group independently

  • Combining the results into a data structure

In [61]: df = md.DataFrame({'A': ['foo', 'bar', 'foo', 'bar',
   ....:                          'foo', 'bar', 'foo', 'foo'],
   ....:                    'B': ['one', 'one', 'two', 'three',
   ....:                          'two', 'two', 'one', 'three'],
   ....:                    'C': mt.random.randn(8),
   ....:                    'D': mt.random.randn(8)})
   ....: 

In [62]: df.execute()
Out[62]: 
     A      B         C         D
0  foo    one  0.236483 -0.283515
1  bar    one  0.778070 -0.065016
2  foo    two  0.804944  0.779283
3  bar  three -1.039868 -1.075678
4  foo    two -0.050011 -1.887501
5  bar    two -1.723543 -0.142226
6  foo    one -0.542069 -0.297924
7  foo  three -0.023324  0.753029

Grouping and then applying the sum() function to the resulting groups.

In [63]: df.groupby('A').sum().execute()
Out[63]: 
            C         D
A                      
bar -1.985342 -1.282920
foo  0.426024 -0.936627

Grouping by multiple columns forms a hierarchical index, and again we can apply the sum function.

In [64]: df.groupby(['A', 'B']).sum().execute()
Out[64]: 
                  C         D
A   B                        
foo one   -0.305585 -0.581439
    two    0.754933 -1.108218
    three -0.023324  0.753029
bar one    0.778070 -0.065016
    two   -1.723543 -0.142226
    three -1.039868 -1.075678

Plotting

We use the standard convention for referencing the matplotlib API:

In [65]: import matplotlib.pyplot as plt

In [66]: plt.close('all')
In [67]: ts = md.Series(mt.random.randn(1000),
   ....:                index=md.date_range('1/1/2000', periods=1000))
   ....: 

In [68]: ts = ts.cumsum()

In [69]: ts.plot()
Out[69]: <AxesSubplot:>
../../_images/series_plot_basic.png

On a DataFrame, the plot() method is a convenience to plot all of the columns with labels:

In [70]: df = md.DataFrame(mt.random.randn(1000, 4), index=ts.index,
   ....:                   columns=['A', 'B', 'C', 'D'])
   ....: 

In [71]: df = df.cumsum()

In [72]: plt.figure()
Out[72]: <Figure size 640x480 with 0 Axes>

In [73]: df.plot()
Out[73]: <AxesSubplot:>

In [74]: plt.legend(loc='best')
Out[74]: <matplotlib.legend.Legend at 0x7ff762a3d790>
../../_images/frame_plot_basic.png

Getting data in/out

CSV

In [75]: df.to_csv('foo.csv').execute()
Out[75]: 
Empty DataFrame
Columns: []
Index: []

Reading from a csv file.

In [76]: md.read_csv('foo.csv').execute()
Out[76]: 
     Unnamed: 0          A         B          C          D
0    2000-01-01   0.476736 -0.530359  -0.028306   1.219260
1    2000-01-02  -0.144028 -1.370880  -1.200896   0.045540
2    2000-01-03   0.050505 -0.403787  -0.502491   0.491048
3    2000-01-04   0.765867 -1.120256  -0.812434  -0.595760
4    2000-01-05   2.440408  0.357761  -1.474871   0.838766
..          ...        ...       ...        ...        ...
995  2002-09-22 -32.183753 -1.571340 -26.254543 -50.510185
996  2002-09-23 -33.072655 -2.267491 -27.223734 -51.296070
997  2002-09-24 -31.575486 -1.972108 -28.569647 -51.134554
998  2002-09-25 -30.922447 -1.018882 -26.659718 -51.022256
999  2002-09-26 -31.779789 -0.147407 -25.589601 -49.144979

[1000 rows x 5 columns]