10 minutes to Mars DataFrame

This is a short introduction to Mars DataFrame which is originated from 10 minutes to pandas.

Customarily, we import as follows:

In [1]: import mars.tensor as mt

In [2]: import mars.dataframe as md

Object creation

Creating a Series by passing a list of values, letting it create a default integer index:

In [3]: s = md.Series([1, 3, 5, mt.nan, 6, 8])

In [4]: s.execute()
Out[4]: 
0    1.0
1    3.0
2    5.0
3    NaN
4    6.0
5    8.0
dtype: float64

Creating a DataFrame by passing a Mars tensor, with a datetime index and labeled columns:

In [5]: dates = md.date_range('20130101', periods=6)

In [6]: dates.execute()
Out[6]: 
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
               '2013-01-05', '2013-01-06'],
              dtype='datetime64[ns]', freq='D')

In [7]: df = md.DataFrame(mt.random.randn(6, 4), index=dates, columns=list('ABCD'))

In [8]: df.execute()
Out[8]: 
                   A         B         C         D
2013-01-01  0.960848  0.297661  0.870183 -1.575193
2013-01-02  1.295732 -0.535892 -1.174109  1.517341
2013-01-03  1.159627  1.780637  1.075509  1.431557
2013-01-04 -0.111415  0.299132 -1.348894  1.554470
2013-01-05 -0.892663 -1.086993 -0.520841 -0.544437
2013-01-06  1.342391  0.007117 -0.959792  0.565875

Creating a DataFrame by passing a dict of objects that can be converted to series-like.

In [9]: df2 = md.DataFrame({'A': 1.,
   ...:                     'B': md.Timestamp('20130102'),
   ...:                     'C': md.Series(1, index=list(range(4)), dtype='float32'),
   ...:                     'D': mt.array([3] * 4, dtype='int32'),
   ...:                     'E': 'foo'})
   ...: 

In [10]: df2.execute()
Out[10]: 
     A          B    C  D    E
0  1.0 2013-01-02  1.0  3  foo
1  1.0 2013-01-02  1.0  3  foo
2  1.0 2013-01-02  1.0  3  foo
3  1.0 2013-01-02  1.0  3  foo

The columns of the resulting DataFrame have different dtypes.

In [11]: df2.dtypes
Out[11]: 
A           float64
B    datetime64[ns]
C           float32
D             int32
E            object
dtype: object

Viewing data

Here is how to view the top and bottom rows of the frame:

In [12]: df.head().execute()
Out[12]: 
                   A         B         C         D
2013-01-01  0.960848  0.297661  0.870183 -1.575193
2013-01-02  1.295732 -0.535892 -1.174109  1.517341
2013-01-03  1.159627  1.780637  1.075509  1.431557
2013-01-04 -0.111415  0.299132 -1.348894  1.554470
2013-01-05 -0.892663 -1.086993 -0.520841 -0.544437

In [13]: df.tail(3).execute()
Out[13]: 
                   A         B         C         D
2013-01-04 -0.111415  0.299132 -1.348894  1.554470
2013-01-05 -0.892663 -1.086993 -0.520841 -0.544437
2013-01-06  1.342391  0.007117 -0.959792  0.565875

Display the index, columns:

In [14]: df.index.execute()
Out[14]: 
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
               '2013-01-05', '2013-01-06'],
              dtype='datetime64[ns]', freq='D')

In [15]: df.columns.execute()
Out[15]: Index(['A', 'B', 'C', 'D'], dtype='object')

DataFrame.to_tensor() gives a Mars tensor representation of the underlying data. Note that this can be an expensive operation when your DataFrame has columns with different data types, which comes down to a fundamental difference between DataFrame and tensor: tensors have one dtype for the entire tensor, while DataFrames have one dtype per column. When you call DataFrame.to_tensor(), Mars DataFrame will find the tensor dtype that can hold all of the dtypes in the DataFrame. This may end up being object, which requires casting every value to a Python object.

For df, our DataFrame of all floating-point values, DataFrame.to_tensor() is fast and doesn’t require copying data.

In [16]: df.to_tensor().execute()
Out[16]: 
array([[ 0.9608482 ,  0.29766134,  0.87018271, -1.57519279],
       [ 1.29573241, -0.53589213, -1.17410891,  1.51734107],
       [ 1.15962749,  1.78063688,  1.07550894,  1.43155654],
       [-0.11141514,  0.29913241, -1.34889449,  1.55446998],
       [-0.89266252, -1.08699256, -0.52084058, -0.54443662],
       [ 1.34239051,  0.00711697, -0.95979215,  0.56587513]])

For df2, the DataFrame with multiple dtypes, DataFrame.to_tensor() is relatively expensive.

In [17]: df2.to_tensor().execute()
Out[17]: 
array([[1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo'],
       [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo'],
       [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo'],
       [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo']],
      dtype=object)

Note

DataFrame.to_tensor() does not include the index or column labels in the output.

describe() shows a quick statistic summary of your data:

In [18]: df.describe().execute()
Out[18]: 
              A         B         C         D
count  6.000000  6.000000  6.000000  6.000000
mean   0.625753  0.126944 -0.342991  0.491602
std    0.917470  0.971684  1.058169  1.297372
min   -0.892663 -1.086993 -1.348894 -1.575193
25%    0.156651 -0.400140 -1.120530 -0.266859
50%    1.060238  0.152389 -0.740316  0.998716
75%    1.261706  0.298765  0.522427  1.495895
max    1.342391  1.780637  1.075509  1.554470

Sorting by an axis:

In [19]: df.sort_index(axis=1, ascending=False).execute()
Out[19]: 
                   D         C         B         A
2013-01-01 -1.575193  0.870183  0.297661  0.960848
2013-01-02  1.517341 -1.174109 -0.535892  1.295732
2013-01-03  1.431557  1.075509  1.780637  1.159627
2013-01-04  1.554470 -1.348894  0.299132 -0.111415
2013-01-05 -0.544437 -0.520841 -1.086993 -0.892663
2013-01-06  0.565875 -0.959792  0.007117  1.342391

Sorting by values:

In [20]: df.sort_values(by='B').execute()
Out[20]: 
                   A         B         C         D
2013-01-05 -0.892663 -1.086993 -0.520841 -0.544437
2013-01-02  1.295732 -0.535892 -1.174109  1.517341
2013-01-06  1.342391  0.007117 -0.959792  0.565875
2013-01-01  0.960848  0.297661  0.870183 -1.575193
2013-01-04 -0.111415  0.299132 -1.348894  1.554470
2013-01-03  1.159627  1.780637  1.075509  1.431557

Selection

Note

While standard Python / Numpy expressions for selecting and setting are intuitive and come in handy for interactive work, for production code, we recommend the optimized DataFrame data access methods, .at, .iat, .loc and .iloc.

Getting

Selecting a single column, which yields a Series, equivalent to df.A:

In [21]: df['A'].execute()
Out[21]: 
2013-01-01    0.960848
2013-01-02    1.295732
2013-01-03    1.159627
2013-01-04   -0.111415
2013-01-05   -0.892663
2013-01-06    1.342391
Freq: D, Name: A, dtype: float64

Selecting via [], which slices the rows.

In [22]: df[0:3].execute()
Out[22]: 
                   A         B         C         D
2013-01-01  0.960848  0.297661  0.870183 -1.575193
2013-01-02  1.295732 -0.535892 -1.174109  1.517341
2013-01-03  1.159627  1.780637  1.075509  1.431557

In [23]: df['20130102':'20130104'].execute()
Out[23]: 
                   A         B         C         D
2013-01-02  1.295732 -0.535892 -1.174109  1.517341
2013-01-03  1.159627  1.780637  1.075509  1.431557
2013-01-04 -0.111415  0.299132 -1.348894  1.554470

Selection by label

For getting a cross section using a label:

In [24]: df.loc['20130101'].execute()
Out[24]: 
A    0.960848
B    0.297661
C    0.870183
D   -1.575193
Name: 2013-01-01 00:00:00, dtype: float64

Selecting on a multi-axis by label:

In [25]: df.loc[:, ['A', 'B']].execute()
Out[25]: 
                   A         B
2013-01-01  0.960848  0.297661
2013-01-02  1.295732 -0.535892
2013-01-03  1.159627  1.780637
2013-01-04 -0.111415  0.299132
2013-01-05 -0.892663 -1.086993
2013-01-06  1.342391  0.007117

Showing label slicing, both endpoints are included:

In [26]: df.loc['20130102':'20130104', ['A', 'B']].execute()
Out[26]: 
                   A         B
2013-01-02  1.295732 -0.535892
2013-01-03  1.159627  1.780637
2013-01-04 -0.111415  0.299132

Reduction in the dimensions of the returned object:

In [27]: df.loc['20130102', ['A', 'B']].execute()
Out[27]: 
A    1.295732
B   -0.535892
Name: 2013-01-02 00:00:00, dtype: float64

For getting a scalar value:

In [28]: df.loc['20130101', 'A'].execute()
Out[28]: 0.9608482045183592

For getting fast access to a scalar (equivalent to the prior method):

In [29]: df.at['20130101', 'A'].execute()
Out[29]: 0.9608482045183592

Selection by position

Select via the position of the passed integers:

In [30]: df.iloc[3].execute()
Out[30]: 
A   -0.111415
B    0.299132
C   -1.348894
D    1.554470
Name: 2013-01-04 00:00:00, dtype: float64

By integer slices, acting similar to numpy/python:

In [31]: df.iloc[3:5, 0:2].execute()
Out[31]: 
                   A         B
2013-01-04 -0.111415  0.299132
2013-01-05 -0.892663 -1.086993

By lists of integer position locations, similar to the numpy/python style:

In [32]: df.iloc[[1, 2, 4], [0, 2]].execute()
Out[32]: 
                   A         C
2013-01-02  1.295732 -1.174109
2013-01-03  1.159627  1.075509
2013-01-05 -0.892663 -0.520841

For slicing rows explicitly:

In [33]: df.iloc[1:3, :].execute()
Out[33]: 
                   A         B         C         D
2013-01-02  1.295732 -0.535892 -1.174109  1.517341
2013-01-03  1.159627  1.780637  1.075509  1.431557

For slicing columns explicitly:

In [34]: df.iloc[:, 1:3].execute()
Out[34]: 
                   B         C
2013-01-01  0.297661  0.870183
2013-01-02 -0.535892 -1.174109
2013-01-03  1.780637  1.075509
2013-01-04  0.299132 -1.348894
2013-01-05 -1.086993 -0.520841
2013-01-06  0.007117 -0.959792

For getting a value explicitly:

In [35]: df.iloc[1, 1].execute()
Out[35]: -0.5358921333121628

For getting fast access to a scalar (equivalent to the prior method):

In [36]: df.iat[1, 1].execute()
Out[36]: -0.5358921333121628

Boolean indexing

Using a single column’s values to select data.

In [37]: df[df['A'] > 0].execute()
Out[37]: 
                   A         B         C         D
2013-01-01  0.960848  0.297661  0.870183 -1.575193
2013-01-02  1.295732 -0.535892 -1.174109  1.517341
2013-01-03  1.159627  1.780637  1.075509  1.431557
2013-01-06  1.342391  0.007117 -0.959792  0.565875

Selecting values from a DataFrame where a boolean condition is met.

In [38]: df[df > 0].execute()
Out[38]: 
                   A         B         C         D
2013-01-01  0.960848  0.297661  0.870183       NaN
2013-01-02  1.295732       NaN       NaN  1.517341
2013-01-03  1.159627  1.780637  1.075509  1.431557
2013-01-04       NaN  0.299132       NaN  1.554470
2013-01-05       NaN       NaN       NaN       NaN
2013-01-06  1.342391  0.007117       NaN  0.565875

Operations

Stats

Operations in general exclude missing data.

Performing a descriptive statistic:

In [39]: df.mean().execute()
Out[39]: 
A    0.625753
B    0.126944
C   -0.342991
D    0.491602
dtype: float64

Same operation on the other axis:

In [40]: df.mean(1).execute()
Out[40]: 
2013-01-01    0.138375
2013-01-02    0.275768
2013-01-03    1.361832
2013-01-04    0.098323
2013-01-05   -0.761233
2013-01-06    0.238898
Freq: D, dtype: float64

Operating with objects that have different dimensionality and need alignment. In addition, Mars DataFrame automatically broadcasts along the specified dimension.

In [41]: s = md.Series([1, 3, 5, mt.nan, 6, 8], index=dates).shift(2)

In [42]: s.execute()
Out[42]: 
2013-01-01    NaN
2013-01-02    NaN
2013-01-03    1.0
2013-01-04    3.0
2013-01-05    5.0
2013-01-06    NaN
Freq: D, dtype: float64

In [43]: df.sub(s, axis='index').execute()
Out[43]: 
                   A         B         C         D
2013-01-01       NaN       NaN       NaN       NaN
2013-01-02       NaN       NaN       NaN       NaN
2013-01-03  0.159627  0.780637  0.075509  0.431557
2013-01-04 -3.111415 -2.700868 -4.348894 -1.445530
2013-01-05 -5.892663 -6.086993 -5.520841 -5.544437
2013-01-06       NaN       NaN       NaN       NaN

Apply

Applying functions to the data:

In [44]: df.apply(lambda x: x.max() - x.min()).execute()
Out[44]: 
A    2.235053
B    2.867629
C    2.424403
D    3.129663
dtype: float64

String Methods

Series is equipped with a set of string processing methods in the str attribute that make it easy to operate on each element of the array, as in the code snippet below. Note that pattern-matching in str generally uses regular expressions by default (and in some cases always uses them). See more at Vectorized String Methods.

In [45]: s = md.Series(['A', 'B', 'C', 'Aaba', 'Baca', mt.nan, 'CABA', 'dog', 'cat'])

In [46]: s.str.lower().execute()
Out[46]: 
0       a
1       b
2       c
3    aaba
4    baca
5     NaN
6    caba
7     dog
8     cat
dtype: object

Merge

Concat

Mars DataFrame provides various facilities for easily combining together Series and DataFrame objects with various kinds of set logic for the indexes and relational algebra functionality in the case of join / merge-type operations.

Concatenating DataFrame objects together with concat():

In [47]: df = md.DataFrame(mt.random.randn(10, 4))

In [48]: df.execute()
Out[48]: 
          0         1         2         3
0 -1.113954 -0.517166 -0.672981 -1.692474
1 -1.331356 -2.109324 -0.722626  0.463621
2 -2.027936 -2.071097  0.628846  0.700336
3 -0.491510  0.490953 -0.160228 -1.332878
4 -0.141396  0.718346 -0.099533 -0.835041
5 -1.295915  0.745409  0.134233  0.533249
6  1.295633 -0.153067  1.313489 -0.126268
7  0.405514  1.265972  0.146944  0.622759
8 -0.864954  0.627396  0.820537 -0.278805
9  0.526630 -1.650138  0.177117  0.303300

# break it into pieces
In [49]: pieces = [df[:3], df[3:7], df[7:]]

In [50]: md.concat(pieces).execute()
Out[50]: 
          0         1         2         3
0 -1.113954 -0.517166 -0.672981 -1.692474
1 -1.331356 -2.109324 -0.722626  0.463621
2 -2.027936 -2.071097  0.628846  0.700336
3 -0.491510  0.490953 -0.160228 -1.332878
4 -0.141396  0.718346 -0.099533 -0.835041
5 -1.295915  0.745409  0.134233  0.533249
6  1.295633 -0.153067  1.313489 -0.126268
7  0.405514  1.265972  0.146944  0.622759
8 -0.864954  0.627396  0.820537 -0.278805
9  0.526630 -1.650138  0.177117  0.303300

Note

Adding a column to a DataFrame is relatively fast. However, adding a row requires a copy, and may be expensive. We recommend passing a pre-built list of records to the DataFrame constructor instead of building a DataFrame by iteratively appending records to it.

Join

SQL style merges. See the Database style joining section.

In [51]: left = md.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]})

In [52]: right = md.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]})

In [53]: left.execute()
Out[53]: 
   key  lval
0  foo     1
1  foo     2

In [54]: right.execute()
Out[54]: 
   key  rval
0  foo     4
1  foo     5

In [55]: md.merge(left, right, on='key').execute()
Out[55]: 
   key  lval  rval
0  foo     1     4
1  foo     1     5
2  foo     2     4
3  foo     2     5

Another example that can be given is:

In [56]: left = md.DataFrame({'key': ['foo', 'bar'], 'lval': [1, 2]})

In [57]: right = md.DataFrame({'key': ['foo', 'bar'], 'rval': [4, 5]})

In [58]: left.execute()
Out[58]: 
   key  lval
0  foo     1
1  bar     2

In [59]: right.execute()
Out[59]: 
   key  rval
0  foo     4
1  bar     5

In [60]: md.merge(left, right, on='key').execute()
Out[60]: 
   key  lval  rval
0  foo     1     4
1  bar     2     5

Grouping

By “group by” we are referring to a process involving one or more of the following steps:

  • Splitting the data into groups based on some criteria

  • Applying a function to each group independently

  • Combining the results into a data structure

In [61]: df = md.DataFrame({'A': ['foo', 'bar', 'foo', 'bar',
   ....:                          'foo', 'bar', 'foo', 'foo'],
   ....:                    'B': ['one', 'one', 'two', 'three',
   ....:                          'two', 'two', 'one', 'three'],
   ....:                    'C': mt.random.randn(8),
   ....:                    'D': mt.random.randn(8)})
   ....: 

In [62]: df.execute()
Out[62]: 
     A      B         C         D
0  foo    one -2.190958 -0.446821
1  bar    one -1.136630  1.211013
2  foo    two  0.428636  0.307273
3  bar  three  1.112435 -0.640566
4  foo    two -1.119867 -0.260091
5  bar    two  0.466883 -0.250718
6  foo    one -0.150621 -1.071470
7  foo  three  0.176874 -1.210768

Grouping and then applying the sum() function to the resulting groups.

In [63]: df.groupby('A').sum().execute()
Out[63]: 
            C         D
A                      
bar  0.442688  0.319728
foo -2.855937 -2.681877

Grouping by multiple columns forms a hierarchical index, and again we can apply the sum function.

In [64]: df.groupby(['A', 'B']).sum().execute()
Out[64]: 
                  C         D
A   B                        
foo one   -2.341579 -1.518291
    two   -0.691231  0.047182
    three  0.176874 -1.210768
bar one   -1.136630  1.211013
    two    0.466883 -0.250718
    three  1.112435 -0.640566

Plotting

We use the standard convention for referencing the matplotlib API:

In [65]: import matplotlib.pyplot as plt

In [66]: plt.close('all')
In [67]: ts = md.Series(mt.random.randn(1000),
   ....:                index=md.date_range('1/1/2000', periods=1000))
   ....: 

In [68]: ts = ts.cumsum()

In [69]: ts.plot()
Out[69]: <AxesSubplot:>
../../_images/series_plot_basic.png

On a DataFrame, the plot() method is a convenience to plot all of the columns with labels:

In [70]: df = md.DataFrame(mt.random.randn(1000, 4), index=ts.index,
   ....:                   columns=['A', 'B', 'C', 'D'])
   ....: 

In [71]: df = df.cumsum()

In [72]: plt.figure()
Out[72]: <Figure size 640x480 with 0 Axes>

In [73]: df.plot()
Out[73]: <AxesSubplot:>

In [74]: plt.legend(loc='best')
Out[74]: <matplotlib.legend.Legend at 0x7f0166f23b90>
../../_images/frame_plot_basic.png

Getting data in/out

CSV

In [75]: df.to_csv('foo.csv').execute()
Out[75]: 
Empty DataFrame
Columns: []
Index: []

Reading from a csv file.

In [76]: md.read_csv('foo.csv').execute()
Out[76]: 
     Unnamed: 0         A         B          C         D
0    2000-01-01  0.647150 -1.727229   0.242598  0.078094
1    2000-01-02 -0.208577 -1.987557   1.030567  1.452177
2    2000-01-03 -1.744447 -2.827255   0.595119  2.697364
3    2000-01-04 -2.787622 -4.265996   1.239133  2.224166
4    2000-01-05 -3.467033 -5.392606   0.903943  3.297445
..          ...       ...       ...        ...       ...
995  2002-09-22  8.536527 -2.346387 -37.631081 -0.499993
996  2002-09-23  8.330832 -0.345227 -36.810593  0.505014
997  2002-09-24  9.685608  0.928617 -37.172674  0.502246
998  2002-09-25  9.020467 -0.448318 -38.884463  0.633670
999  2002-09-26  8.818261  0.429396 -40.779007 -0.658706

[1000 rows x 5 columns]