10 minutes to Mars DataFrame#

This is a short introduction to Mars DataFrame which is originated from 10 minutes to pandas.

Customarily, we import as follows:

In [1]: import mars

In [2]: import mars.tensor as mt

In [3]: import mars.dataframe as md

Now create a new default session.

In [4]: mars.new_session()
Out[4]: <mars.deploy.oscar.session.SyncSession at 0x7f480d9aa090>

Object creation#

Creating a Series by passing a list of values, letting it create a default integer index:

In [5]: s = md.Series([1, 3, 5, mt.nan, 6, 8])

In [6]: s.execute()
Out[6]: 
0    1.0
1    3.0
2    5.0
3    NaN
4    6.0
5    8.0
dtype: float64

Creating a DataFrame by passing a Mars tensor, with a datetime index and labeled columns:

In [7]: dates = md.date_range('20130101', periods=6)

In [8]: dates.execute()
Out[8]: 
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
               '2013-01-05', '2013-01-06'],
              dtype='datetime64[ns]', freq='D')

In [9]: df = md.DataFrame(mt.random.randn(6, 4), index=dates, columns=list('ABCD'))

In [10]: df.execute()
Out[10]: 
                   A         B         C         D
2013-01-01  1.301006  1.015965 -1.111896 -1.066854
2013-01-02  1.966591 -1.249476 -1.373745  0.205893
2013-01-03 -0.458425  0.935811 -0.120990  1.452803
2013-01-04 -0.053453  0.558597  0.947676 -1.298274
2013-01-05 -0.796711 -1.477857  2.683626 -0.705510
2013-01-06  0.377050  0.857864  0.362879  0.627550

Creating a DataFrame by passing a dict of objects that can be converted to series-like.

In [11]: df2 = md.DataFrame({'A': 1.,
   ....:                     'B': md.Timestamp('20130102'),
   ....:                     'C': md.Series(1, index=list(range(4)), dtype='float32'),
   ....:                     'D': mt.array([3] * 4, dtype='int32'),
   ....:                     'E': 'foo'})
   ....: 

In [12]: df2.execute()
Out[12]: 
     A          B    C  D    E
0  1.0 2013-01-02  1.0  3  foo
1  1.0 2013-01-02  1.0  3  foo
2  1.0 2013-01-02  1.0  3  foo
3  1.0 2013-01-02  1.0  3  foo

The columns of the resulting DataFrame have different dtypes.

In [13]: df2.dtypes
Out[13]: 
A           float64
B    datetime64[ns]
C           float32
D             int32
E            object
dtype: object

Viewing data#

Here is how to view the top and bottom rows of the frame:

In [14]: df.head().execute()
Out[14]: 
                   A         B         C         D
2013-01-01  1.301006  1.015965 -1.111896 -1.066854
2013-01-02  1.966591 -1.249476 -1.373745  0.205893
2013-01-03 -0.458425  0.935811 -0.120990  1.452803
2013-01-04 -0.053453  0.558597  0.947676 -1.298274
2013-01-05 -0.796711 -1.477857  2.683626 -0.705510

In [15]: df.tail(3).execute()
Out[15]: 
                   A         B         C         D
2013-01-04 -0.053453  0.558597  0.947676 -1.298274
2013-01-05 -0.796711 -1.477857  2.683626 -0.705510
2013-01-06  0.377050  0.857864  0.362879  0.627550

Display the index, columns:

In [16]: df.index.execute()
Out[16]: 
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
               '2013-01-05', '2013-01-06'],
              dtype='datetime64[ns]', freq='D')

In [17]: df.columns.execute()
Out[17]: Index(['A', 'B', 'C', 'D'], dtype='object')

DataFrame.to_tensor() gives a Mars tensor representation of the underlying data. Note that this can be an expensive operation when your DataFrame has columns with different data types, which comes down to a fundamental difference between DataFrame and tensor: tensors have one dtype for the entire tensor, while DataFrames have one dtype per column. When you call DataFrame.to_tensor(), Mars DataFrame will find the tensor dtype that can hold all of the dtypes in the DataFrame. This may end up being object, which requires casting every value to a Python object.

For df, our DataFrame of all floating-point values, DataFrame.to_tensor() is fast and doesn’t require copying data.

In [18]: df.to_tensor().execute()
Out[18]: 
array([[ 1.30100623,  1.0159649 , -1.111896  , -1.06685408],
       [ 1.96659072, -1.24947564, -1.3737454 ,  0.20589297],
       [-0.45842486,  0.93581082, -0.12099009,  1.45280267],
       [-0.05345327,  0.55859705,  0.94767623, -1.29827372],
       [-0.79671051, -1.47785669,  2.68362625, -0.70551045],
       [ 0.37704991,  0.85786417,  0.36287932,  0.62755022]])

For df2, the DataFrame with multiple dtypes, DataFrame.to_tensor() is relatively expensive.

In [19]: df2.to_tensor().execute()
Out[19]: 
array([[1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo'],
       [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo'],
       [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo'],
       [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'foo']],
      dtype=object)

Note

DataFrame.to_tensor() does not include the index or column labels in the output.

describe() shows a quick statistic summary of your data:

In [20]: df.describe().execute()
Out[20]: 
              A         B         C         D
count  6.000000  6.000000  6.000000  6.000000
mean   0.389343  0.106817  0.231258 -0.130732
std    1.062120  1.151753  1.486531  1.073847
min   -0.796711 -1.477857 -1.373745 -1.298274
25%   -0.357182 -0.797457 -0.864170 -0.976518
50%    0.161798  0.708231  0.120945 -0.249809
75%    1.070017  0.916324  0.801477  0.522136
max    1.966591  1.015965  2.683626  1.452803

Sorting by an axis:

In [21]: df.sort_index(axis=1, ascending=False).execute()
Out[21]: 
                   D         C         B         A
2013-01-01 -1.066854 -1.111896  1.015965  1.301006
2013-01-02  0.205893 -1.373745 -1.249476  1.966591
2013-01-03  1.452803 -0.120990  0.935811 -0.458425
2013-01-04 -1.298274  0.947676  0.558597 -0.053453
2013-01-05 -0.705510  2.683626 -1.477857 -0.796711
2013-01-06  0.627550  0.362879  0.857864  0.377050

Sorting by values:

In [22]: df.sort_values(by='B').execute()
Out[22]: 
                   A         B         C         D
2013-01-05 -0.796711 -1.477857  2.683626 -0.705510
2013-01-02  1.966591 -1.249476 -1.373745  0.205893
2013-01-04 -0.053453  0.558597  0.947676 -1.298274
2013-01-06  0.377050  0.857864  0.362879  0.627550
2013-01-03 -0.458425  0.935811 -0.120990  1.452803
2013-01-01  1.301006  1.015965 -1.111896 -1.066854

Selection#

Note

While standard Python / Numpy expressions for selecting and setting are intuitive and come in handy for interactive work, for production code, we recommend the optimized DataFrame data access methods, .at, .iat, .loc and .iloc.

Getting#

Selecting a single column, which yields a Series, equivalent to df.A:

In [23]: df['A'].execute()
Out[23]: 
2013-01-01    1.301006
2013-01-02    1.966591
2013-01-03   -0.458425
2013-01-04   -0.053453
2013-01-05   -0.796711
2013-01-06    0.377050
Freq: D, Name: A, dtype: float64

Selecting via [], which slices the rows.

In [24]: df[0:3].execute()
Out[24]: 
                   A         B         C         D
2013-01-01  1.301006  1.015965 -1.111896 -1.066854
2013-01-02  1.966591 -1.249476 -1.373745  0.205893
2013-01-03 -0.458425  0.935811 -0.120990  1.452803

In [25]: df['20130102':'20130104'].execute()
Out[25]: 
                   A         B         C         D
2013-01-02  1.966591 -1.249476 -1.373745  0.205893
2013-01-03 -0.458425  0.935811 -0.120990  1.452803
2013-01-04 -0.053453  0.558597  0.947676 -1.298274

Selection by label#

For getting a cross section using a label:

In [26]: df.loc['20130101'].execute()
Out[26]: 
A    1.301006
B    1.015965
C   -1.111896
D   -1.066854
Name: 2013-01-01 00:00:00, dtype: float64

Selecting on a multi-axis by label:

In [27]: df.loc[:, ['A', 'B']].execute()
Out[27]: 
                   A         B
2013-01-01  1.301006  1.015965
2013-01-02  1.966591 -1.249476
2013-01-03 -0.458425  0.935811
2013-01-04 -0.053453  0.558597
2013-01-05 -0.796711 -1.477857
2013-01-06  0.377050  0.857864

Showing label slicing, both endpoints are included:

In [28]: df.loc['20130102':'20130104', ['A', 'B']].execute()
Out[28]: 
                   A         B
2013-01-02  1.966591 -1.249476
2013-01-03 -0.458425  0.935811
2013-01-04 -0.053453  0.558597

Reduction in the dimensions of the returned object:

In [29]: df.loc['20130102', ['A', 'B']].execute()
Out[29]: 
A    1.966591
B   -1.249476
Name: 2013-01-02 00:00:00, dtype: float64

For getting a scalar value:

In [30]: df.loc['20130101', 'A'].execute()
Out[30]: 1.301006234747742

For getting fast access to a scalar (equivalent to the prior method):

In [31]: df.at['20130101', 'A'].execute()
Out[31]: 1.301006234747742

Selection by position#

Select via the position of the passed integers:

In [32]: df.iloc[3].execute()
Out[32]: 
A   -0.053453
B    0.558597
C    0.947676
D   -1.298274
Name: 2013-01-04 00:00:00, dtype: float64

By integer slices, acting similar to numpy/python:

In [33]: df.iloc[3:5, 0:2].execute()
Out[33]: 
                   A         B
2013-01-04 -0.053453  0.558597
2013-01-05 -0.796711 -1.477857

By lists of integer position locations, similar to the numpy/python style:

In [34]: df.iloc[[1, 2, 4], [0, 2]].execute()
Out[34]: 
                   A         C
2013-01-02  1.966591 -1.373745
2013-01-03 -0.458425 -0.120990
2013-01-05 -0.796711  2.683626

For slicing rows explicitly:

In [35]: df.iloc[1:3, :].execute()
Out[35]: 
                   A         B         C         D
2013-01-02  1.966591 -1.249476 -1.373745  0.205893
2013-01-03 -0.458425  0.935811 -0.120990  1.452803

For slicing columns explicitly:

In [36]: df.iloc[:, 1:3].execute()
Out[36]: 
                   B         C
2013-01-01  1.015965 -1.111896
2013-01-02 -1.249476 -1.373745
2013-01-03  0.935811 -0.120990
2013-01-04  0.558597  0.947676
2013-01-05 -1.477857  2.683626
2013-01-06  0.857864  0.362879

For getting a value explicitly:

In [37]: df.iloc[1, 1].execute()
Out[37]: -1.249475639706685

For getting fast access to a scalar (equivalent to the prior method):

In [38]: df.iat[1, 1].execute()
Out[38]: -1.249475639706685

Boolean indexing#

Using a single column’s values to select data.

In [39]: df[df['A'] > 0].execute()
Out[39]: 
                   A         B         C         D
2013-01-01  1.301006  1.015965 -1.111896 -1.066854
2013-01-02  1.966591 -1.249476 -1.373745  0.205893
2013-01-06  0.377050  0.857864  0.362879  0.627550

Selecting values from a DataFrame where a boolean condition is met.

In [40]: df[df > 0].execute()
Out[40]: 
                   A         B         C         D
2013-01-01  1.301006  1.015965       NaN       NaN
2013-01-02  1.966591       NaN       NaN  0.205893
2013-01-03       NaN  0.935811       NaN  1.452803
2013-01-04       NaN  0.558597  0.947676       NaN
2013-01-05       NaN       NaN  2.683626       NaN
2013-01-06  0.377050  0.857864  0.362879  0.627550

Operations#

Stats#

Operations in general exclude missing data.

Performing a descriptive statistic:

In [41]: df.mean().execute()
Out[41]: 
A    0.389343
B    0.106817
C    0.231258
D   -0.130732
dtype: float64

Same operation on the other axis:

In [42]: df.mean(1).execute()
Out[42]: 
2013-01-01    0.034555
2013-01-02   -0.112684
2013-01-03    0.452300
2013-01-04    0.038637
2013-01-05   -0.074113
2013-01-06    0.556336
Freq: D, dtype: float64

Operating with objects that have different dimensionality and need alignment. In addition, Mars DataFrame automatically broadcasts along the specified dimension.

In [43]: s = md.Series([1, 3, 5, mt.nan, 6, 8], index=dates).shift(2)

In [44]: s.execute()
Out[44]: 
2013-01-01    NaN
2013-01-02    NaN
2013-01-03    1.0
2013-01-04    3.0
2013-01-05    5.0
2013-01-06    NaN
Freq: D, dtype: float64

In [45]: df.sub(s, axis='index').execute()
Out[45]: 
                   A         B         C         D
2013-01-01       NaN       NaN       NaN       NaN
2013-01-02       NaN       NaN       NaN       NaN
2013-01-03 -1.458425 -0.064189 -1.120990  0.452803
2013-01-04 -3.053453 -2.441403 -2.052324 -4.298274
2013-01-05 -5.796711 -6.477857 -2.316374 -5.705510
2013-01-06       NaN       NaN       NaN       NaN

Apply#

Applying functions to the data:

In [46]: df.apply(lambda x: x.max() - x.min()).execute()
Out[46]: 
A    2.763301
B    2.493822
C    4.057372
D    2.751076
dtype: float64

String Methods#

Series is equipped with a set of string processing methods in the str attribute that make it easy to operate on each element of the array, as in the code snippet below. Note that pattern-matching in str generally uses regular expressions by default (and in some cases always uses them). See more at Vectorized String Methods.

In [47]: s = md.Series(['A', 'B', 'C', 'Aaba', 'Baca', mt.nan, 'CABA', 'dog', 'cat'])

In [48]: s.str.lower().execute()
Out[48]: 
0       a
1       b
2       c
3    aaba
4    baca
5     NaN
6    caba
7     dog
8     cat
dtype: object

Merge#

Concat#

Mars DataFrame provides various facilities for easily combining together Series and DataFrame objects with various kinds of set logic for the indexes and relational algebra functionality in the case of join / merge-type operations.

Concatenating DataFrame objects together with concat():

In [49]: df = md.DataFrame(mt.random.randn(10, 4))

In [50]: df.execute()
Out[50]: 
          0         1         2         3
0  1.602503  0.637887 -1.055659 -0.870901
1 -0.207847  0.578935  0.187930 -0.598496
2  0.248635  0.732671  0.040768  0.086089
3  2.445247 -1.828383  0.319453  0.499161
4  0.002242 -0.532310  0.465981 -0.044516
5 -0.568768 -0.783130 -0.193903  0.527273
6 -0.581460  1.081464 -0.784618  0.985970
7  0.820671 -0.089649 -0.169568  1.136980
8 -1.262083 -0.484230 -0.966078 -0.271765
9  1.484495  0.025214 -0.386365 -0.157642

# break it into pieces
In [51]: pieces = [df[:3], df[3:7], df[7:]]

In [52]: md.concat(pieces).execute()
Out[52]: 
          0         1         2         3
0  1.602503  0.637887 -1.055659 -0.870901
1 -0.207847  0.578935  0.187930 -0.598496
2  0.248635  0.732671  0.040768  0.086089
3  2.445247 -1.828383  0.319453  0.499161
4  0.002242 -0.532310  0.465981 -0.044516
5 -0.568768 -0.783130 -0.193903  0.527273
6 -0.581460  1.081464 -0.784618  0.985970
7  0.820671 -0.089649 -0.169568  1.136980
8 -1.262083 -0.484230 -0.966078 -0.271765
9  1.484495  0.025214 -0.386365 -0.157642

Note

Adding a column to a DataFrame is relatively fast. However, adding a row requires a copy, and may be expensive. We recommend passing a pre-built list of records to the DataFrame constructor instead of building a DataFrame by iteratively appending records to it.

Join#

SQL style merges. See the Database style joining section.

In [53]: left = md.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]})

In [54]: right = md.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]})

In [55]: left.execute()
Out[55]: 
   key  lval
0  foo     1
1  foo     2

In [56]: right.execute()
Out[56]: 
   key  rval
0  foo     4
1  foo     5

In [57]: md.merge(left, right, on='key').execute()
Out[57]: 
   key  lval  rval
0  foo     1     4
1  foo     1     5
2  foo     2     4
3  foo     2     5

Another example that can be given is:

In [58]: left = md.DataFrame({'key': ['foo', 'bar'], 'lval': [1, 2]})

In [59]: right = md.DataFrame({'key': ['foo', 'bar'], 'rval': [4, 5]})

In [60]: left.execute()
Out[60]: 
   key  lval
0  foo     1
1  bar     2

In [61]: right.execute()
Out[61]: 
   key  rval
0  foo     4
1  bar     5

In [62]: md.merge(left, right, on='key').execute()
Out[62]: 
   key  lval  rval
0  foo     1     4
1  bar     2     5

Grouping#

By “group by” we are referring to a process involving one or more of the following steps:

  • Splitting the data into groups based on some criteria

  • Applying a function to each group independently

  • Combining the results into a data structure

In [63]: df = md.DataFrame({'A': ['foo', 'bar', 'foo', 'bar',
   ....:                          'foo', 'bar', 'foo', 'foo'],
   ....:                    'B': ['one', 'one', 'two', 'three',
   ....:                          'two', 'two', 'one', 'three'],
   ....:                    'C': mt.random.randn(8),
   ....:                    'D': mt.random.randn(8)})
   ....: 

In [64]: df.execute()
Out[64]: 
     A      B         C         D
0  foo    one  0.344229  0.651770
1  bar    one  1.545709  0.283630
2  foo    two -0.284916 -0.134626
3  bar  three  1.233326 -0.380892
4  foo    two -0.279609  1.131483
5  bar    two  0.504077  0.001285
6  foo    one -1.799578  0.772063
7  foo  three  0.397000 -1.274884

Grouping and then applying the sum() function to the resulting groups.

In [65]: df.groupby('A').sum().execute()
Out[65]: 
            C         D
A                      
bar  3.283112 -0.095977
foo -1.622873  1.145808

Grouping by multiple columns forms a hierarchical index, and again we can apply the sum function.

In [66]: df.groupby(['A', 'B']).sum().execute()
Out[66]: 
                  C         D
A   B                        
bar one    1.545709  0.283630
    three  1.233326 -0.380892
    two    0.504077  0.001285
foo one   -1.455349  1.423834
    three  0.397000 -1.274884
    two   -0.564524  0.996858

Plotting#

We use the standard convention for referencing the matplotlib API:

In [67]: import matplotlib.pyplot as plt

In [68]: plt.close('all')
In [69]: ts = md.Series(mt.random.randn(1000),
   ....:                index=md.date_range('1/1/2000', periods=1000))
   ....: 

In [70]: ts = ts.cumsum()

In [71]: ts.plot()
Out[71]: <AxesSubplot:>
../../_images/series_plot_basic.png

On a DataFrame, the plot() method is a convenience to plot all of the columns with labels:

In [72]: df = md.DataFrame(mt.random.randn(1000, 4), index=ts.index,
   ....:                   columns=['A', 'B', 'C', 'D'])
   ....: 

In [73]: df = df.cumsum()

In [74]: plt.figure()
Out[74]: <Figure size 640x480 with 0 Axes>

In [75]: df.plot()
Out[75]: <AxesSubplot:>

In [76]: plt.legend(loc='best')
Out[76]: <matplotlib.legend.Legend at 0x7f480dbb5190>
../../_images/frame_plot_basic.png

Getting data in/out#

CSV#

In [77]: df.to_csv('foo.csv').execute()
Out[77]: 
Empty DataFrame
Columns: []
Index: []

Reading from a csv file.

In [78]: md.read_csv('foo.csv').execute()
Out[78]: 
     Unnamed: 0          A          B          C         D
0    2000-01-01   0.701958  -0.473432   0.091628  0.611637
1    2000-01-02  -0.802138  -1.265910   1.449300 -0.170869
2    2000-01-03  -0.922035  -2.449515   1.584012 -0.655200
3    2000-01-04  -0.308032  -3.807212   1.448196  0.218207
4    2000-01-05  -1.003870  -3.894358   1.401089  0.039483
..          ...        ...        ...        ...       ...
995  2002-09-22  19.508035  56.998958 -70.809038 -2.759202
996  2002-09-23  20.269463  58.095389 -71.245478 -2.915498
997  2002-09-24  19.340480  57.421578 -72.614199 -4.340794
998  2002-09-25  19.637776  56.936608 -71.965457 -3.360895
999  2002-09-26  20.149852  56.302042 -73.130355 -3.954408

[1000 rows x 5 columns]