.. _10min: **************************** 10 minutes to Mars DataFrame **************************** .. currentmodule:: mars.dataframe This is a short introduction to Mars DataFrame which is originated from `10 minutes to pandas `_. Customarily, we import as follows: .. ipython:: python import mars import mars.tensor as mt import mars.dataframe as md Now create a new default session. .. ipython:: python mars.new_session() Object creation --------------- Creating a :class:`Series` by passing a list of values, letting it create a default integer index: .. ipython:: python :okwarning: s = md.Series([1, 3, 5, mt.nan, 6, 8]) s.execute() Creating a :class:`DataFrame` by passing a Mars tensor, with a datetime index and labeled columns: .. ipython:: python dates = md.date_range('20130101', periods=6) dates.execute() df = md.DataFrame(mt.random.randn(6, 4), index=dates, columns=list('ABCD')) df.execute() Creating a :class:`DataFrame` by passing a dict of objects that can be converted to series-like. .. ipython:: python df2 = md.DataFrame({'A': 1., 'B': md.Timestamp('20130102'), 'C': md.Series(1, index=list(range(4)), dtype='float32'), 'D': mt.array([3] * 4, dtype='int32'), 'E': 'foo'}) df2.execute() The columns of the resulting :class:`DataFrame` have different dtypes. .. ipython:: python df2.dtypes Viewing data ------------ Here is how to view the top and bottom rows of the frame: .. ipython:: python df.head().execute() df.tail(3).execute() Display the index, columns: .. ipython:: python df.index.execute() df.columns.execute() :meth:`DataFrame.to_tensor` gives a Mars tensor representation of the underlying data. Note that this can be an expensive operation when your :class:`DataFrame` has columns with different data types, which comes down to a fundamental difference between DataFrame and tensor: **tensors have one dtype for the entire tensor, while DataFrames have one dtype per column**. When you call :meth:`DataFrame.to_tensor`, Mars DataFrame will find the tensor dtype that can hold *all* of the dtypes in the DataFrame. This may end up being ``object``, which requires casting every value to a Python object. For ``df``, our :class:`DataFrame` of all floating-point values, :meth:`DataFrame.to_tensor` is fast and doesn't require copying data. .. ipython:: python df.to_tensor().execute() For ``df2``, the :class:`DataFrame` with multiple dtypes, :meth:`DataFrame.to_tensor` is relatively expensive. .. ipython:: python df2.to_tensor().execute() .. note:: :meth:`DataFrame.to_tensor` does *not* include the index or column labels in the output. :func:`~DataFrame.describe` shows a quick statistic summary of your data: .. ipython:: python df.describe().execute() Sorting by an axis: .. ipython:: python df.sort_index(axis=1, ascending=False).execute() Sorting by values: .. ipython:: python df.sort_values(by='B').execute() Selection --------- .. note:: While standard Python / Numpy expressions for selecting and setting are intuitive and come in handy for interactive work, for production code, we recommend the optimized DataFrame data access methods, ``.at``, ``.iat``, ``.loc`` and ``.iloc``. Getting ~~~~~~~ Selecting a single column, which yields a :class:`Series`, equivalent to ``df.A``: .. ipython:: python df['A'].execute() Selecting via ``[]``, which slices the rows. .. ipython:: python df[0:3].execute() df['20130102':'20130104'].execute() Selection by label ~~~~~~~~~~~~~~~~~~ For getting a cross section using a label: .. ipython:: python df.loc['20130101'].execute() Selecting on a multi-axis by label: .. ipython:: python df.loc[:, ['A', 'B']].execute() Showing label slicing, both endpoints are *included*: .. ipython:: python df.loc['20130102':'20130104', ['A', 'B']].execute() Reduction in the dimensions of the returned object: .. ipython:: python df.loc['20130102', ['A', 'B']].execute() For getting a scalar value: .. ipython:: python df.loc['20130101', 'A'].execute() For getting fast access to a scalar (equivalent to the prior method): .. ipython:: python df.at['20130101', 'A'].execute() Selection by position ~~~~~~~~~~~~~~~~~~~~~ Select via the position of the passed integers: .. ipython:: python df.iloc[3].execute() By integer slices, acting similar to numpy/python: .. ipython:: python df.iloc[3:5, 0:2].execute() By lists of integer position locations, similar to the numpy/python style: .. ipython:: python df.iloc[[1, 2, 4], [0, 2]].execute() For slicing rows explicitly: .. ipython:: python df.iloc[1:3, :].execute() For slicing columns explicitly: .. ipython:: python df.iloc[:, 1:3].execute() For getting a value explicitly: .. ipython:: python df.iloc[1, 1].execute() For getting fast access to a scalar (equivalent to the prior method): .. ipython:: python df.iat[1, 1].execute() Boolean indexing ~~~~~~~~~~~~~~~~ Using a single column's values to select data. .. ipython:: python df[df['A'] > 0].execute() Selecting values from a DataFrame where a boolean condition is met. .. ipython:: python df[df > 0].execute() Operations ---------- Stats ~~~~~ Operations in general *exclude* missing data. Performing a descriptive statistic: .. ipython:: python df.mean().execute() Same operation on the other axis: .. ipython:: python df.mean(1).execute() Operating with objects that have different dimensionality and need alignment. In addition, Mars DataFrame automatically broadcasts along the specified dimension. .. ipython:: python s = md.Series([1, 3, 5, mt.nan, 6, 8], index=dates).shift(2) s.execute() df.sub(s, axis='index').execute() Apply ~~~~~ Applying functions to the data: .. ipython:: python df.apply(lambda x: x.max() - x.min()).execute() String Methods ~~~~~~~~~~~~~~ Series is equipped with a set of string processing methods in the `str` attribute that make it easy to operate on each element of the array, as in the code snippet below. Note that pattern-matching in `str` generally uses `regular expressions `__ by default (and in some cases always uses them). See more at :ref:`Vectorized String Methods `. .. ipython:: python s = md.Series(['A', 'B', 'C', 'Aaba', 'Baca', mt.nan, 'CABA', 'dog', 'cat']) s.str.lower().execute() Merge ----- Concat ~~~~~~ Mars DataFrame provides various facilities for easily combining together Series and DataFrame objects with various kinds of set logic for the indexes and relational algebra functionality in the case of join / merge-type operations. Concatenating DataFrame objects together with :func:`concat`: .. ipython:: python df = md.DataFrame(mt.random.randn(10, 4)) df.execute() # break it into pieces pieces = [df[:3], df[3:7], df[7:]] md.concat(pieces).execute() .. note:: Adding a column to a :class:`DataFrame` is relatively fast. However, adding a row requires a copy, and may be expensive. We recommend passing a pre-built list of records to the :class:`DataFrame` constructor instead of building a :class:`DataFrame` by iteratively appending records to it. Join ~~~~ SQL style merges. See the :ref:`Database style joining ` section. .. ipython:: python left = md.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]}) right = md.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]}) left.execute() right.execute() md.merge(left, right, on='key').execute() Another example that can be given is: .. ipython:: python left = md.DataFrame({'key': ['foo', 'bar'], 'lval': [1, 2]}) right = md.DataFrame({'key': ['foo', 'bar'], 'rval': [4, 5]}) left.execute() right.execute() md.merge(left, right, on='key').execute() Grouping -------- By "group by" we are referring to a process involving one or more of the following steps: - **Splitting** the data into groups based on some criteria - **Applying** a function to each group independently - **Combining** the results into a data structure .. ipython:: python df = md.DataFrame({'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'], 'B': ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'], 'C': mt.random.randn(8), 'D': mt.random.randn(8)}) df.execute() Grouping and then applying the :meth:`~mars.dataframe.groupby.GroupBy.sum` function to the resulting groups. .. ipython:: python df.groupby('A').sum().execute() Grouping by multiple columns forms a hierarchical index, and again we can apply the `sum` function. .. ipython:: python df.groupby(['A', 'B']).sum().execute() Plotting -------- We use the standard convention for referencing the matplotlib API: .. ipython:: python import matplotlib.pyplot as plt plt.close('all') .. ipython:: python ts = md.Series(mt.random.randn(1000), index=md.date_range('1/1/2000', periods=1000)) ts = ts.cumsum() @savefig series_plot_basic.png ts.plot() On a DataFrame, the :meth:`~DataFrame.plot` method is a convenience to plot all of the columns with labels: .. ipython:: python df = md.DataFrame(mt.random.randn(1000, 4), index=ts.index, columns=['A', 'B', 'C', 'D']) df = df.cumsum() plt.figure() df.plot() @savefig frame_plot_basic.png plt.legend(loc='best') Getting data in/out ------------------- CSV ~~~ .. ipython:: python df.to_csv('foo.csv').execute() :ref:`Reading from a csv file. ` .. ipython:: python md.read_csv('foo.csv').execute() .. ipython:: python :suppress: import os os.remove('foo.csv')