Source code for mars.tensor.arithmetic.isclose

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright 1999-2021 Alibaba Group Holding Ltd.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np

from ... import opcodes as OperandDef
from ...serialization.serializables import Float64Field, BoolField
from ..array_utils import device, as_same_device
from .core import TensorBinOp

class TensorIsclose(TensorBinOp):
    _op_type_ = OperandDef.ISCLOSE

    _rtol = Float64Field("rtol")
    _atol = Float64Field("atol")
    _equal_nan = BoolField("equal_nan")

    def __init__(
        err = err if err is not None else np.geterr()

    def rtol(self):
        return self._rtol

    def atol(self):
        return self._atol

    def equal_nan(self):
        return self._equal_nan

    def _is_sparse(cls, x1, x2):
        if (
            hasattr(x1, "issparse")
            and x1.issparse()
            and np.isscalar(x2)
            and not np.isclose(x2, 0)
            return True
        if (
            hasattr(x2, "issparse")
            and x2.issparse()
            and np.isscalar(x1)
            and not np.isclose(x1, 0)
            return True
        return False

    def execute(cls, ctx, op):
        inputs, device_id, xp = as_same_device(
            [ctx[c.key] for c in op.inputs], device=op.device, ret_extra=True

        with device(device_id):
            a = op.lhs if np.isscalar(op.lhs) else inputs[0]
            b = op.rhs if np.isscalar(op.rhs) else inputs[-1]

            ctx[op.outputs[0].key] = xp.isclose(
                a, b, atol=op.atol, rtol=op.rtol, equal_nan=op.equal_nan

[docs]def isclose(a, b, rtol=1e-05, atol=1e-08, equal_nan=False): """ Returns a boolean tensor where two tensors are element-wise equal within a tolerance. The tolerance values are positive, typically very small numbers. The relative difference (`rtol` * abs(`b`)) and the absolute difference `atol` are added together to compare against the absolute difference between `a` and `b`. Parameters ---------- a, b : array_like Input tensors to compare. rtol : float The relative tolerance parameter (see Notes). atol : float The absolute tolerance parameter (see Notes). equal_nan : bool Whether to compare NaN's as equal. If True, NaN's in `a` will be considered equal to NaN's in `b` in the output tensor. Returns ------- y : array_like Returns a boolean tensor of where `a` and `b` are equal within the given tolerance. If both `a` and `b` are scalars, returns a single boolean value. See Also -------- allclose Notes ----- For finite values, isclose uses the following equation to test whether two floating point values are equivalent. absolute(`a` - `b`) <= (`atol` + `rtol` * absolute(`b`)) The above equation is not symmetric in `a` and `b`, so that `isclose(a, b)` might be different from `isclose(b, a)` in some rare cases. Examples -------- >>> import mars.tensor as mt >>> mt.isclose([1e10,1e-7], [1.00001e10,1e-8]).execute() array([True, False]) >>> mt.isclose([1e10,1e-8], [1.00001e10,1e-9]).execute() array([True, True]) >>> mt.isclose([1e10,1e-8], [1.0001e10,1e-9]).execute() array([False, True]) >>> mt.isclose([1.0, mt.nan], [1.0, mt.nan]).execute() array([True, False]) >>> mt.isclose([1.0, mt.nan], [1.0, mt.nan], equal_nan=True).execute() array([True, True]) """ op = TensorIsclose(rtol=rtol, atol=atol, equal_nan=equal_nan, dtype=np.dtype(bool)) return op(a, b)